
Hash Proofs Systems and Applications to Implicit
Cryptography

Thèse d’habilitation

présentée et soutenue publiquement le 12 juin 2019 par

Olivier Blazy

pour l’obtention du

Diplôme d’Habilitation à Diriger des Recherches
de l’Université de Limoges

Devant le jury composé de :

Correspondant HDR : Philippe Gaborit (Université de Limoges)

Rapporteurs : Dennis Hofheinz (Karlsruhe Institute of Technology)

Fabien Laguillaumie (Université Claude Bernard Lyon 1)

Ayoub Otmani (Université de Rouen)

Examinateurs : Tibor Jager (Université de Paderborn)

Duong-Hieu Phan (Université de Limoges)

David Pointcheval (CNRS / École Normale Supérieure)

Damien Vergnaud (Sorbonne Université / Institut Universitaire de France)

Travaux effectués au Laboratoire XLim de l’Université de Limoges

Acknowledgments

A lot of things could be said today, there have been so many changes in the 2626 days since my
PhD defense. Some of them being much more joyful than others, some being much more forced... This
habilitation is the occasion to do a status report on the scientific side of those last years, force myself to
take some time to breath, and decide on what to focus next. Let’s now start the proper acknowledgments,
I am hoping not to forget anyone, but please don’t see any malice in any omission.

Members of the jury always appear first in this section. I’d like to thank Philippe Gaborit for
accepting to coordinate the administrative side of this habilitation process. Thank you for the warm
welcome in Limoges and for making this place a nice environment to work in. I also want to thank
Dennis Hofheinz, Fabien Laguillaumie and Ayoub Otmani for accepting to be Rapporteurs of this thesis,
and also the rest of the jury Tibor Jager, Duong-Hieu Phan, David Pointcheval, and Damien Vergnaud,
thank you for making this possible, and for sacrificing part of your time in this busy period.

One cannot do research alone, and I would also like to thank every colleagues I had the occasion to
chat, work, exchange with. The list would be quite long, and I am afraid to miss someone, but a big
thank you to the people from the Cryptis team here in Limoges, to those from the FoC group in Bochum,
to the current and former member of the Cascade team from ENS, and to people in the Crypto group
from Louvain-la-Neuve where I did my first crypto steps. I hope we will continue to have numerous
discussions, and continue to make the crypto community an enjoyable work environment. I also want to
thank the various members of the administrative staff for their everyday support.

Not only is the crypto community a friendly environment but sometimes we also produce papers.
For this I would like to thank all my co-authors, some of which I never had the occasion to meet. In
those that were not explicitly mentioned earlier, I have to thank Céline Chevalier, thanks for all those
discussions, supporting my weird ideas, maybe some day we will manage to write a paper where none of
us say at some point ”you are not clear”. There are so many other co-authors I’d like to thank, Pascal
Lafourcade for his energy, and his ideas of fun constructions, thank you also to Paul, Laura and Neals,
for being my first PhD Students.

Professionally I am torn between 50% of research, 50% of teaching, and 50% of administrative work.
I really want to thank members of the Cryptis Team / Computer Science department for making this a
pleasant experience. Thank you Damien, Emmanuel for helping make the best of a bad situation.

After a while, the line gets blurry between colleagues, friends; and a very serious discussion about
cryptographic protocols can derive into an exchange of weird narwhal pictures. I would have never
thought there was a link between obfuscation and Bollywood movies, and the omnipresence of acronyms
make confusing discussions about TOR, and not TOR... A very special thank you to Amandine, David,
Isis, and Saqib for those discussions, and I hope we will have many others.

Playing an important part in keeping my sanity are also the non crypto friends (yes, they exist!).
Thank you for being present when I need it, and thank you for all the wonderful adventures. And sorry
to have bothered you way more than what is reasonable with my manuscript and slides.

And finally, I of course want to thank my family. Thank you for always pushing me, always believing
in me. Thank you for being here when I needed it, and for supporting my crazy hours during deadlines
throughout the years.

i

Je sers la science et c’est ma joie.

Contents

1 Introduction 1
1.1 Symmetric Primitives . 1
1.2 Asymmetric Primitives . 2
1.3 Contributions . 2
1.4 Summary of other results . 4
1.5 List of Publications . 4

2 Technical Introduction 8
2.1 Universal Composability . 8

2.1.1 Simple UC Framework. 9
2.2 Standard Cryptographic Primitives . 9

2.2.1 Encryption . 9
2.2.2 Digital Signature . 10

I Building Hash proof System 12

3 Hash Proof Definition 13
3.1 Definition . 13
3.2 Various Subtypes . 14

3.2.1 GL-SPHF . 14
3.2.2 CS-SPHF . 15
3.2.3 KV-SPHF . 15

4 Languages and Underlying Hypotheses 17
4.1 Side Result: SPHF for an encryption of a solution of an NP problem 17
4.2 Elliptic Curves . 18

4.2.1 Reminder on Matrix Notation . 18
4.2.2 Languages à la Groth Sahai . 19
4.2.3 Structure Preserving Smooth Projective Hash Function 20

4.3 Euclidean Lattices . 21
4.3.1 First solution (Universality, Approximate Correctness). 22
4.3.2 Second solution (Imperfect Universality, Statistical Correctness). 22
4.3.3 Mind the Gap . 23

4.4 And more . 23
4.4.1 A Code-Based Encryption: RQC . 24
4.4.2 The associated Hash Proof . 24

4.5 Expanding Languages . 25

5 SPHF Friendly Commitment 27
5.1 Commitments. 27
5.2 Generic Commitment à la Haralambiev . 28

5.2.1 Building Blocks. 28
5.2.2 Generic Construction. 28

5.3 Revisited FLM Commitment . 29
5.3.1 k-MDDH Cramer-Shoup Encryption . 30
5.3.2 A Universally Composable Commitment with Adaptive Security Based on MDDH 30
5.3.3 Associated Structure-Preserving Smooth Projective Hash Function 31

iii

II Using HPS in Constructions 32

6 Symmetric Constructions (LAKE) 33
6.1 Language Authenticated Key Exchange . 33

6.1.1 The Ideal Functionality . 34
6.1.2 Generic Construction . 35

6.2 Password-Authenticated Key Exchange . 36
6.2.1 Ideal Functionality . 36
6.2.2 High Level Construction . 37

6.3 Verifier-based PAKE . 38
6.4 DPAKE . 38

6.4.1 Constructions . 39
6.4.2 Simple Protocol . 40
6.4.3 Login procedure . 41
6.4.4 Efficient Version . 41

6.5 Secret Handshake . 42

7 Asymmetric Constructions (OLBE) 43
7.1 OLBE . 43

7.1.1 Security Properties and Ideal Functionality of OLBE 44
7.1.2 Generic UC-Secure Instantiation of OLBE with Adaptive Security 45

7.2 Oblivious Transfer . 45
7.3 Adaptive Oblivious Transfer . 47

7.3.1 Transformation . 47
7.3.2 Constructing a Blind Fragmented IBKEM from an IBKEM 48
7.3.3 Generic Construction of Adaptive OT . 51
7.3.4 Pairing-Based Instantiation of Adaptive OT . 51

7.4 Oblivious Signature-Based Envelope . 53
7.4.1 High-Level Instantiation . 55

Chapter 1

Introduction

Contents
1.1 Symmetric Primitives . 1

1.2 Asymmetric Primitives . 2

1.3 Contributions . 2

1.4 Summary of other results . 4

1.5 List of Publications . 4

This thesis presents research done by the author (and several co-authors) since his doctoral thesis.
Due to space constraints, we will focus on one principal research theme, only works related to the design
of protocols in public-key cryptography with implicit authentication are presented. Our research works in
other domains of cryptography, such as code-based cryptography [ABCG17,AMBD+18] with the various
NIST submissions, constructions with tight security [BKP14, BKKP15]) are not presented. A complete
list of publications is available on Section 1.5, page 4.

Everyday, we see an increase in the importance of security and privacy. Cryptography must help the
modern world protect individuals, preserve the privacy of their life, and all interactions therein.

Nearly 30 years ago, [GMR89] proposed the concept of Zero-Knowledge proofs to revolutionize the
way we handle secret informations. The idea was to prove that a statement was fulfilled without revealing
anything else. Such proofs have lead to a wonderful array of applications like [BW06, Gro07, FPV09,
BFI+10,JR13].

However, we now know that metadata is often enough to learn enough information to learn someone’s
secret. For example, even if we don’t know what is said, we can paint a pretty clear picture of what
is happening when someone gets a call from an STD specialist, calls some former contacts, and then a
suicide hotline.

In this context, knowing that a statement exists and is fulfilled is already too much, and such problem
lead to the study of implicit proofs. Some existing primitives were already designed in the context of
implicit cryptography. In case of two party protocols, we have shown that they can be classified into two
main categories.

1.1 Symmetric Primitives

In the category of symmetric primitives, we suppose two users interact in order to generate a shared
high entropy secret key. As often with public key cryptography, this shared key will later be used with
a symmetric primitive.

One of the most widely studied problems in this area is called Password Authenticated Key
Exchange as introduced by Bellovin and Merritt [BM92], where two users possess a password (more
formally a low entropy secret), and they interact so that they obtain a shared (high entropy) key if and
only if their password match. Of course, we expect that they learn nothing of the other’s password
otherwise.

There exists several variants of this primitive in the literature, Secret Handshakes has been introduced
in 2003 by Balfanz et al. [BDS+03] (see also [JL09b, AKB07]) echoing to the Masonic handshake that
would supposedly allow members to identify with each other. It allows two members of the same group
to identify each other secretly, in the sense that each party reveals his affiliation to the other only if

1

2 Introduction 1.3

they are members of the same group. At the end of the protocol, the parties can set up an ephemeral
session key for securing further communication between them and an outsider is unable to determine if
the handshake succeeded. In case of failure, the players do not learn any information about the other
party’s affiliation. Here users would possess a signature by an authority and would manage to obtain a
shared key, if and only if both signatures were made by the same authority. Another variant, proposed
in [CCGS10] would now consider secret Credentials, and this CAKE (Credential Authenticated Key
Exchange) would succeed if and only if the secret credentials match.

In all those cases, the users are expected to possess secrets (words), and are expected to obtain a
shared secret if and only if, those words belong to a specific language, which lead us to supersede those
notions with the idea of LAKE (Language Based Authenticated Key Exchange) [BBC+13b].

1.2 Asymmetric Primitives

On the other hand, there are cases where a user is interacting with a server, and we do not expect both
of the participant to behave the same way. For example, when secretly retrieving data, the user expect
the server not to learn which line was requested, but the server might only expect the user not to be
able to retrieve more than one line at once.

This is a primitive called Oblivious Transfer, which was originally introduced by Rabin [Rab81].
Oblivious Transfer is at the heart of various protocols from Yao’s protocol [Yao86], to Oblivious RAM
[WHC+14,GOS18] or even most garbled circuit [BHR12]. It comes to no surprise, that Oblivious Transfer
are everywhere since Kilian [Kil88] showed that every multi-party computation scheme can be achieved
from an oblivious transfer.

Other notions have echoed to Oblivious Transfer since, Private Information Retrieval [CGKS95]
is a relaxed version of Oblivious Transfer, where the server still need to be oblivious to the retrieved data
but the user is allowed to learn more. With the increasing need for user privacy, these schemes are quite
useful in practice and may be used for accessing records for email repositories, collection of webpages,
music... Even though protecting the privacy of the user, it is equally important that the user should not
learn more information than he is allowed to. This is known as database privacy and the corresponding
protocol is called a Symmetrically Private Information Retrieval (SPIR), which could be employed in
practice, for medical data or biometric information

One can also perform a conditional Oblivious Transfer, expecting the user to possess some informa-
tion to be able to access some information, a special case would be for signature through Oblivious
Signature-Based Envelope. It was introduced by Li, Du and Boneh in [LDB03]. OSBE schemes
consider the case where Alice (the receiver) is a member of an organization and possesses a certificate
produced by an authority attesting she actually belongs to this organization. Bob (the sender) wants
to send a private message P to members of this organization. However due to the sensitive nature of
the organization, Alice does not want to give Bob neither her certificate nor a proof she belongs to the
organization. OSBE lets Bob send an obfuscated version of this message P to Alice, in such a way that
she will be able to find P if and only if she is in the required organization. In the process, Bob cannot
decide whether Alice does really belong to the organization.

Once again, the access to an information is gated behind the possession of a word, belonging
to a specific language, which we generalized into Oblivious Language-Based Envelope [BCG16]
encompassing most examples of conditional disclosure schemes: Access Controlled Oblivious Trans-
fer [CDN09, CDNZ11], Priced Oblivious Transfer [AIR01, RKP09]) and Conditional Oblivious Trans-
fer [DOR99], and Conditional Disclosure of Secrets (see for instance [AIR01, GIKM98, BGN05, LL07,
Wee14, IW14,Att14,GKW15]).

1.3 Contributions

First, I will focus (chronologically) on five of the more meaningful publications in my recent years, and
then I will briefly sketch other relevant results that will not necessarily be detailed in this manuscript.

New Techniques for SPHFs and Efficient One-round PAKE Protocols [BBC+13b] At Crypto’13,
we managed to classify existing Smooth Projective Hash Function into different families, we showed that
one of those families (named KV as it first was used in [KV11]) are of particular interest as it allowed to
build round-optimal protocol. We managed to propose the first so-called KV-SPHF on Cramer Shoup
Encryption, leading to the most efficient PAKE scheme in the BPR model. It was an open problem at
the time, and the solution used by [KV11] lacked efficiency, as it consisted in building an SPHF over

1.3 Contributions 3

ElGamal, and then using a Simulation-Sound Zero-Knowledge proof to transform it into a CCA scheme,
it also required living in a bilinear group as it used pairings.

An interesting side-results in this paper are Trapdoor-SPHF, that allows some simulation in the proof
at the cost of having only a computational Smoothness.

(Hierarchical) Identity-Based Encryption from Affine Message Authentication [BKP14] At
Crypto’14, we proposed a generic transformation from any affine message authentication code (MAC)
to an identity-based encryption (IBE) scheme over pairing groups of prime order. If the MAC satisfies a
security notion related to unforgeability against chosen-message attacks and, for example, the k-Linear
assumption holds, then the resulting IBE scheme is adaptively secure. Our security reduction is tightness
preserving, i.e., if the MAC has a tight security reduction so has the IBE scheme. Furthermore, the
transformation also extends to hierarchical identity-based encryption (HIBE). We also showed how to
construct affine MACs with a tight security reduction to standard assumptions.

While this result was not directly related to Implicit Authentication, we will see in Section 7.3,
page 47, that it can be used to design Adaptive Oblivious Transfer. Interestingly, this is one of the case
where having a all-powerful authority generating each user secret key is not a liability, as the authority
is also going to be the performing the encryption.

Adaptive Oblivious Transfer and Generalization [BCG16] Oblivious Transfer are famous in
theoretical cryptography as one of the main building block for many Multi-Party Computation scheme.
However they fail to find many practical applications due their inefficiency. In Asiacrypt’16, we proposed
an Adaptive Oblivious Transfer, UC secure with semi-adaptive corruption. This scheme, still has the
huge overhead inherent to UC-secure Oblivious Transfer, however if a user queries adaptively more than
one line, the server no longer has to resend everything allowing much faster communication.

While doing so, we also proposed a generalization of Oblivious Transfer protocols in the same vein as
the LAKE we introduced in PKC’13. This allowed us to highlight core-building blocks in SPHF-based
Oblivious Transfer constructions (and Oblivious Signature-Based Envelope, Credentials-based schemes,
...). We gave an ideal functionality, and a generic construction fulfilling it which we then use to instantiate
efficient version of various schemes.

Structure-Preserving Smooth Projective Hashing [BC16] Still at Asiacrypt’16, we proposed in
another paper, a new concept we named Structure-Preserving Smooth Projective Hash Function. While
it was never explicitly required, classical SPHF built on elliptic curve were using a scalar as witness.
This was really simple to handle, however it destroys any hope in having some simulation freedom in the
witness. Our new notion, in the same vein as Structure-Preserving signature, requires projections keys,
words, and also witnesses to be group elements.

This allows us to use the UC commitment from [FLM11] with an SP-SPHF. We show that when
doing that, we can instantiate compact PAKE and Oblivious Transfer Schemes. Contrarily to pre-
existing schemes, these schemes only had constant size flows (minus the database overhead for OT) and
no longer the logarithmic size due to the bit per bit commitment. It should be noted that during the cycle
of submissions [JR15] appeared and proposed a more efficient PAKE based on a QA-NIZK approach.

Efficient Encryption From Random Quasi-Cyclic Codes [AMBD+18] In IEEE Transactions
of Information Theory of May 2018, we proposed a framework for constructing efficient code-based
encryption schemes. It had the particularity of not hiding any structure in their public matrix. The
framework is in the spirit of the schemes first proposed by Alekhnovich in 2003 [Ale03] and based on the
difficulty of decoding random linear codes from random errors of low weight. We somewhat depart from
Alekhnovich’s approach and propose an encryption scheme based on the difficulty of decoding random
quasi-cyclic codes.

We proposed two new cryptosystems within our framework: the hamming quasi-cyclic cryptosystem
(HQC), based on the hamming metric, and the rank quasi-cyclic cryptosystem (RQC), based on the rank
metric. We give a security proof, which reduces the indistinguishability under chosen plaintext attack
security of our systems to a decision version of the well-known problem of decoding random families of
quasi-cyclic codes for the hamming and rank metric.

This scheme was a part of several works destined to be submitted to the NIST Post-Quantum com-
petition. This one is particular as it has a structure clean enough for us to be able to build the very
first code-based SPHF on it. Interestingly due to the difference in Metric, one can manage to avoid the

4 Introduction 1.5

pitfall of having to consider difference languages for the correctness and the smoothness that is present
on Lattice-based constructions.

1.4 Summary of other results

While I have several results that can not be efficiently categorized in a family, one can still distinguish
three main topic of interest in my recent publications.

UC protocols We have had the occasion of working and proving several protocols in the UC frame-
work. We revisited (and improved) Lindell’s Commitment in [BCPV13] managing to reduce the number
of required rounds and revisiting the security.

We also proposed various ameliorations / generalizations around PAKE and Oblivious Transfer in
[BBC+13a, ABB+13, BC15, BCG17]. The first paper presented a generalization encompassing most (if
not all) AKE protocols, we proposed a UC functionality, and a generic construction. The 2nd and then
the 3rd paper proposed generic ways to build Oblivious Transfer first for pairing-based cryptography,
and then for several hypotheses as long as the basis tool were existing. The last one, proposed a
transformation from PAKE to Oblivious Transfer and proposed the most efficient scheme to date.

Post-Quantum Cryptography When trying to consider other underlying hypotheses, a natural con-
tender in the post-quantum world is to have a look at Lattice-based cryptography. While there was
already a proposal from [KV09] several issues make it an unreasonable building blocks. In [BBDQ18],
we proposed an SPHF for lattices that is efficient, and work directly on classical schemes.

Due to the general expertise, of my current team, we have also proposed several results around
code-based cryptography [ABCG15,ABCG16,ABCG17,AMBD+18,ABG+19]. This was the occasion to
formalize some results to start closing the gap in term of functionality between code-based and lattice-
based crypto, and also we submitted several contenders (7) to NIST PQC competition, still in the race
as of this writing. The last paper of the list is a proper code-based signature that emerged too late for
the competition.

Tight Security We also have some results around Tight Security [BKP14, BKKP15], in both cases
we design generic construction of tight primitive (IBE and Signatures) from simple building blocks.
For IBE’s, when applying we manage to circumvent an impossibility result by proving a randomizable
signature with only 3 groups elements. The trick is behind the definition of randomizable our signature
does not randomize in the whole set of valid signature, but in an indistinguishable subset. For the
signatures, we provide tight signature with a tree-based approach on chameleon hashes. One of our
construction leads to a tight signature in the standard model based on discrete logarithm. Applying a
garbled circuit on our construction based on DDH, one can obtain the IBE from DDH from [DG17].

1.5 List of Publications

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David Pointcheval.
SPHF-Friendly Non-Interactive Commitment Schemes. In Kazue Sako and Palash Sarkar, edi-
tors, Advances in Cryptology - Proceedings of ASIACRYPT ’13, volume 8269 of Lecture Notes in
Computer Science, pages 214–234, Bangalore, India, December 2013. Springer.

[ABCG15] Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Gaborit. A Code-Based Group
Signature Scheme. In Jean-Pierre Tillich, Pascale Charpin, Nicolas Sendrier, editor, The 9th
International Workshop on Coding and Cryptography 2015 WCC2015, Paris, France, April 2015.

[ABCG16] Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Gaborit. A practical group
signature scheme based on rank metric. In Sylvain Duquesne and Svetla Petkova-Nikova, editors,
Arithmetic of Finite Fields - 6th International Workshop, WAIFI 2016, Ghent, Belgium, July
13-15, 2016, Revised Selected Papers, pages 258–275. Springer, July 2016.

[ABCG17] Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Gaborit. A code-based group
signature scheme. Designs, Codes and Cryptography, 82:1–25, 2017.

[ABD+18] Carlos Aguilar Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and Gilles
Zémor. Efficient encryption from random quasi-cyclic codes. IEEE Trans. Information Theory,
64(5):3927–3943, 2018.

[ABG+19] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor. Durandal:
a rank metric based signature scheme. To appear in Eurocrypt 2019.

1.5 List of Publications 5

In Jean-Pierre Tillich, Pascale Charpin, Nicolas Sendrier, editor, The 9th International Workshop
on Coding and Cryptography 2015 WCC2015, Paris, France, April 2015.

[BBB+19a] Olivier Blazy, Angèle Bossuat, Xavier Bultel, Pierre-Alain Fouque, Cristina Onete, and Elena
Pagnin. SAID: Reshaping Signal into an Identity-Based Asynchronous Messaging Protocol with
Authenticated Ratcheting. To appear in EuroS&P 2019.

[BBC+13a] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, Conference on Practice and Theory in Public-Key Cryptography
(PKC ’13), volume 7778 of Lecture Notes in Computer Science, pages 272–291, Nara, Japan, March
2013. Springer.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
New Techniques for SPHFs and Efficient One-Round PAKE Protocols. In Ran Canetti and Juan
Garay, editors, Advances in Cryptology - Proceedings of CRYPTO ’13, volume 8042 of Lecture
Notes in Computer Science, pages 449–475, Santa Barbara, California, August 2013. Springer.

[BBDQ18] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. Hash proof systems over
lattices revisited. In Public-Key Cryptography - PKC 2018 - 21st IACR International Conference
on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, Proceedings, Part II,
volume 10770, pages 644–674. Springer, March 2018.

[BBL16a] Olivier Blazy, Xavier Bultel, and Pascal Lafourcade. Anonymizable ring signature without pairing.
In Frédéric Cuppens, Lingyu Wang, Nora Cuppens-Boulahia, Nadia Tawbi, and Joaqúın Garćıa-
Alfaro, editors, Foundations and Practice of Security - 9th International Symposium, FPS 2016,
Québec City, QC, Canada, October 24-25, 2016, Revised Selected Papers, pages 214–222, Québec,
Canada, 2016. Springer.

[BBL16b] Olivier Blazy, Xavier Bultel, and Pascal Lafourcade. Two secure anonymous proxy-based data
storages. In Christian Callegari, Marten van Sinderen, Panagiotis G. Sarigiannidis, Pierangela
Samarati, Enrique Cabello, Pascal Lorenz, and Mohammad S. Obaidat, editors, Proceedings of
the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) -
Volume 4: SECRYPT, Lisbon, Portugal, July 26-28, 2016., pages 251–258. Springer, July 2016.

[BC15] Olivier Blazy and Céline Chevalier. Generic Construction of UC-Secure Oblivious Transfer. In Tal
Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, Applied
Cryptography and Network Security - 13th International Conference, ACNS 2015, New York, NY,
USA, June 2-5, 2015, Revised Selected Papers, volume 9092 of Lecture Notes in Computer Science,
pages 65–86, New York, USA, June 2015. Springer.

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective hashing. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part II, pages 339–369, Hanoi, Vietnam, December
2016. Springer.

[BC18a] Olivier Blazy and Céline Chevalier. Non-interactive key exchange from identity-based encryption.
Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg,
Germany, August 27 - August 30, 2018, August 2018.

[BC18b] Olivier Blazy and Céline Chevalier. Spreading alerts quietly: New insights from theory and
practice. Proceedings of the 13th International Conference on Availability, Reliability and Security,
Hamburg, Germany, August 27 - August 30, 2018, August 2018.

[BCB+17] Olivier Blazy, Emmanuel Conchon, Pierre-François Bonnefoi, Damien Sauveron, Raja Naeem
Akram, Konstantinos Markantonakis, Keith Mayes, and Serge Chaumette. An efficient protocol
for uas security. In Integrated Communications, Navigation and Surveillance Conference (ICNS),
2017. IEEE, 2017.

[BCF+11] Olivier Blazy, Sébastien Canard, Georg Fuchsbauer, Aline Gouget, Hervé Sibert, and Jacques
Traoré. Achieving optimal anonymity in transferable e-cash with a judge. In Abderrahmane
Nitaj and David Pointcheval, editors, AFRICACRYPT 2011 - 4th International Conference on
Cryptology in Africa, volume 6737 of Lecture Notes in Computer Science, pages 206–223, Dakar,
Senegal, June 2011. Springer.

[BCG16] Olivier Blazy, Céline Chevalier, and Paul Germouty. Adaptive oblivious transfer and generaliza-
tion. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II, pages 217–247, Hanoi,
Vietnam, December 2016. Springer.

6 Introduction 1.5

[BCG17] Olivier Blazy, Céline Chevalier, and Paul Germouty. Almost optimal oblivious transfer from QA-
NIZK. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, Applied Cryptography
and Network Security - 15th International Conference, ACNS 2017, Kanazawa, Japan, July 10-12,
2017, Proceedings, volume 10355 of Lecture Notes in Computer Science, pages 579–598. Springer,
2017.

[BCGJ17] Olivier Blazy, Emmanuel Conchon, Paul Germouty, and Amandine Jambert. Efficient id-based
designated verifier signature. In Proceedings of the 12th International Conference on Availability,
Reliability and Security, Reggio Calabria, Italy, August 29 - September 01, 2017, pages 44:1–44:8.
ACM, 2017.

[BCPV12] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Efficient UC-Secure
Authenticated Key-Exchange for Algebraic Languages. Technical report, IACR ePrint Archive,
May 2012.

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and Im-
provement of Lindell’s UC-Secure Commitment Schemes. In Rei Safavi-Naini and Michael E.
Locasto, editors, Conference on Applied Cryptography and Network Security (ACNS ’13), volume
7954 of Lecture Notes in Computer Science, pages 534–551, Banff, Alberta, Canadan, June 2013.
Springer.

[BCV15] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Non-Interactive Zero-Knowledge Proofs of
Non-Membership. In K. Nyberg, editor, Proceedings of CT-RSA, volume 9048 of Lecture Notes in
Computer Science, pages 145–164, San Francisco, California, April 2015. Springer.

[BCV16] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Mitigating server breaches in password-
based authentication: Secure and efficient solutions. In Kazue Sako, editor, Topics in Cryptology
- CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA,
USA, February 29 - March 4, 2016, Proceedings, pages 3–18, San Francisco, USA, February 2016.
Springer.

[BDSS16] Olivier Blazy, David Derler, Daniel Slamanig, and Raphael Spreitzer. Non-interactive plaintext
(in-)equality proofs and group signatures with verifiable controllable linkability. In Kazue Sako,
editor, Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference
2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings, pages 127–143, San
Francisco, USA, February 2016. Springer.

[BFI+10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and Da-
mien Vergnaud. Batch groth-sahai. In Jianying Zhou and Moti Yung, editors, Conference on
Applied Cryptography and Network Security (ACNS ’10), volume 6123 of Lecture Notes in Com-
puter Science, pages 218–235, Beiing, China, June 2010. Springer.

[BFPV11] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on Rand-
omizable Ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, Conference on Practice and Theory in Public-Key Cryptography (PKC ’11), volume 6571
of Lecture Notes in Computer Science, pages 403–422, Taormina, Italy, March 2011. Springer.

[BFPV13] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Short Blind Signa-
tures. Journal of Computer Security, 21(5):627–661, November 2013.

[BGP19] Olivier Blazy, Paul Germouty, Duong-Hieu Phan. Downgradable Identity-Based Encryption and
Applications. In M. Matsui, editor, Proceedings of CT-RSA, volume 11405 of Lecture Notes in
Computer Science, pages 44–61, San Francisco, California, Mach 2019. Springer.

[BGSS17] Olivier Blazy, Philippe Gaborit, Julien Schrek, and Nicolas Sendrier. A code-based blind signature.
In 2017 IEEE International Symposium on Information Theory, ISIT 2017, Aachen, Germany,
June 25-30, 2017, pages 2718–2722, 2017.

[BKKP15] Olivier Blazy, Saqib A. Kakvi, Eike Kiltz, and Jiaxin Pan. Tightly-Secure Signatures from Chame-
leon Hash Functions. In Jonathan Katz, editor, Conference on Practice and Theory in Public-Key
Cryptography (PKC ’15), volume 9020 of Lecture Notes in Computer Science, pages 257–278, Gait-
hersburg, Maryland, USA, 2015. Springer.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) Identity-Based Encryption from Affine
Message Authentication. In Ran Canetti and Juan Garay, editors, Advances in Cryptology -
Proceedings of CRYPTO ’14, volume 8616 of Lecture Notes in Computer Science, pages 408–426,
Santa Barbara, California, August 2014. Springer.

[BP12] Olivier Blazy and David Pointcheval. Traceable Signature with Stepping Capabilities. In David
Naccache, editor, Cryptography and Security: From Theory to Applications, volume 6805 of Lecture
Notes in Computer Science, pages 108–131. Springer, January 2012. Cryptography and Security:
From Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater on the Occasion of

1.5 List of Publications 7

His 65th Birthday.
[BPV12a] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Compact round-optimal partially-blind

signatures. In Ivan Visconti and Roberto De Prisco, editors, The 8th Conference on Security in
Communication Networks (SCN ’12), volume 7485 of Lecture Notes in Computer Science, pages
95–112, Amalfi, Italy, September 2012. Springer.

[BPV12b] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-Optimal Privacy-Preserving
Protocols with Smooth Projective Hash Functions. In Ronald Cramer, editor, 9th Theory of
Cryptography Conference (TCC ’12), volume 7194 of Lecture Notes in Computer Science, pages
94–111, Taormina, Italy, March 2012. Springer.

Chapter 2

Technical Introduction

Contents
2.1 Universal Composability . 8

2.1.1 Simple UC Framework. 9

2.2 Standard Cryptographic Primitives . 9

2.2.1 Encryption . 9

2.2.2 Digital Signature . 10

2.1 Universal Composability

In part II, page 33, our main goal will be to provide protocols security in the universal composability
framework. This framework was introduced in [Can01]. While this framework can be quite overwhelming,
we aim to give a brief overview to have some common conventions.

In the context of multi-party computation, one wants several users Pi with inputs xi to be able to
compute a specific function f(x1, . . . , xn) = (y1, . . . , yn) without learning anything except yi, even when
several players are colluding / cheating.

This approach was seen for example in Yao’s Millionaires’ problem [Yao82], where two millionaires
want to know who is richer without revealing their respective wealth. So here, xi is the wealth of the
millionaire i, and f simply returns which one is richer (in this specific case y1 = yi = yn). It should be
noted, that there are several cases (Blind Signature, Oblivious Transfer, ...) where the outputs y∗ are
different for the various players involved.

Instead of following the classical approach which aims to list exhaustively all the expected properties,
Canetti did something else and tried to define how a protocol should ideally work.

For that, he divided the world into two spaces, the real world, where the protocol is run with some
possible attack, and the ideal world where everything would go smoothly. For a good protocol, it should
be impossible to distinguish the real world from the ideal one.

In the ideal world there is an incorruptible entity named the ideal functionality, to which players can
send their inputs privately, and then receive the corresponding output without any kind of communication
between the players. This way the functionality can be set to be correct, without revealing anything
except what is expected.

Functionality

y1

x1

yn
Pn

xn

yixi

P1

Pi

A protocol, in the real world with an adversary, should create an execution similar to the one obtained
by the ideal functionality. This means that the communication between the players should not give more

8

2.2 Standard Cryptographic Primitives 9

information than the functionality description, and its output. In this case the protocol runs not really
against the adversary but against the environment who picks the inputs given to the players, and obtains
the outputs. After the interaction the environment should output a bit saying whether he is in the real
world.

The main constraint is that the adversary is now free to interact with the environment whenever
he wants which prevents the simulator from rewinding when needed. The adversary has access to the
communication between the players but not their inputs/outputs, while the environment has only access
to the inputs/outputs.

The goal of the framework [Can01] is to ensure that UC-secure protocols will continue to behave in
the ideal way even if executed in a concurrent way in arbitrary environments. It is a simulation-based
model, relying on the indistinguishability between the real world and the ideal world. In the ideal world,
the security is provided by an ideal functionality F , capturing all the properties required for the protocol
and all the means of the adversary. In order to prove that a protocol Π emulates F , one has to construct,
for any polynomial adversary A (which controls the communication between the players), a simulator S
such that no polynomial environment Z can distinguish between the real world (with the real players
interacting with themselves and A and executing the protocol π) and the ideal world (with dummy
players interacting with S and F) with a significant advantage. The adversary can be either adaptive,
i.e. allowed to corrupt users whenever it likes to, or static, i.e. required to choose which users to corrupt
prior to the execution of the session sid of the protocol. After corrupting a player, A has complete access
to the internal state and private values of the player, takes its entire control, and plays on its behalf. As
this last possibility offers the widest set of challenges, we are going to only consider adaptive corruptions,
while relying on reliable erasures so to wipe correctly the memory.

2.1.1 Simple UC Framework.

Canetti, Cohen and Lindell formalized a simpler variant in [CCL15], that we use here. This simplifies the
description of the functionalities for the following reasons (in a nutshell): All channels are automatically
assumed to be authenticated (as if we were working in the FAuth-hybrid model); There is no need for
public delayed outputs (waiting for the adversary before delivering a message to a party), neither for an
explicit description of the corruptions. We refer the interested reader to [CCL15] for details.

2.2 Standard Cryptographic Primitives

2.2.1 Encryption

An encryption scheme E is described through four algorithms (Setup,KeyGen,Encrypt,Decrypt):
• Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
• KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private) decryption key
dk;

• Encrypt(pk,M ; ρ) outputs a ciphertext c = C(M), on the message M , under the encryption key pk,
with the randomness ρ;

• Decrypt(dk, c) outputs the plaintext M , encrypted in the ciphertext c or ⊥.
Such encryption scheme is required to have the following security properties:
• Correctness: For every pair of keys (ek, dk) generated by KeyGen, every messages M , and every

randomness ρ, we should have Decrypt(dk,Encrypt(ek,M ; ρ)) = M .

• Indistinguishability under Chosen Plaintext Attack [GM84] :
This notion (IND− CPA), formalized by the adjacent game,
states that an adversary shouldn’t be able to efficiently guess
which message has been encrypted even if he chooses the two
original plaintexts.
The advantages are:

AdvindE,A(K) = |Pr[Expind−1
E,A (K) = 1]− Pr[Expind−0

E,A (K) = 1]|
AdvindE (K, t) = max

A≤t
AdvindE,A(K).

Expind−bE,A (K)

1. param← Setup(1K)
2. (pk, dk)← KeyGen(param)
3. (M0,M1)← A(FIND : pk)
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

One might want to increase the requirements on the security of an encryption, in this case the
IND− CPA notion can be strengthened into Indistinguishability under Adaptive Chosen Ciphertext
Attack IND− CCA2 (The non-adaptive notion was introduced in [NY90], while the adaptive one was
introduced a year later in [RS92]):

10 Technical Introduction 2.2

• IND− CCA2: This notion states that an adversary
should not be able to efficiently guess which mes-
sage has been encrypted even if he chooses the two
original plaintexts, and can ask several decryption
of ciphertexts as long as they are not the challenge
one.

Expind−cca−bE,A (K)

1. param← Setup(1K)
2. (pk, dk)← KeyGen(param)
3. (M0,M1)← A(FIND : pk,ODecrypt(·))
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·))
6. IF (c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

– Where the ODecrypt oracle outputs the decryption of c under the challenge decryption key
dk. The input queries (c) are added to the list CT of decrypted ciphertexts.

One may want to extend the notion of encryption to a labelled encryption, where the message M
is encrypted but with some extra public information `. This label can be useful to include session
information for example.

2.2.2 Digital Signature

A digital signature scheme S [DH76,GMR88] allows a signer to produce a verifiable proof that he indeed
produced a message. It is described through four algorithms (Setup,KeyGen,Sign,Verif):

Digital Signature Scheme
p σ = (Setup,KeyGen,Sign,Verif):

• Setup(1K) where K is the security parameter, generates the global parameters param of the scheme,
for example the message space;

• KeyGen(param), outputs a pair of (sk, vk), where sk is the (secret) signing key, and vk is the (public)
verification key;

• Sign(sk,M ;µ), outputs a signature σ(M), on a message M , under the signing key sk, and some
randomness µ;

• Verif(vk,M, σ) checks the validity of the signature σ with respect to the message M and the
verification key vk, and so outputs a bit.

y

In the following we will expect at least two properties for signatures:

• Correctness: For every pair (vk, sk) generated by KeyGen, for every message M , and for all rand-
omness µ, we have Verif(vk,M, Sign(sk,M ;µ)) = 1.

• Strong Existential Unforgeability under Chosen Message
Attacks [SPMLS02]. Even after querying n valid signatu-
res σi on chosen messages Mi, an adversary should not be
able to output a fresh valid signature. To formalize this
notion, we define a signing oracle Sign:

– Sign(vk,m): This oracle outputs a signature on m
valid under the verification key vk. The resulting
pair (m,σ) is added to the signed pair set S ′.

Expst−ufS,A (K)

1. param← Setup(1K)
2. (vk, sk)← KeyGen(param)
3. (m∗, σ∗)← A(vk, Sign(vk, ·))
4. b← Verif(vk,m∗, σ∗)
5. IF (m∗, σ∗) ∈ S ′ RETURN 0
6. ELSE RETURN b

The probability of success against this game is denoted by

Succst−ufS,A (K) = Pr[Expst−ufS,A (K) = 1], Succst−ufS (K, t) = max
A≤t

Succst−ufS,A (K).

Or Existential Unforgeability under Chosen Message At-
tacks [GMR88] (EUF− CMA). Even after querying n
valid signatures on chosen messages (Mi), an adversary
should not be able to output a valid signature on a fresh
message M . To formalize this notion, we define a signing
oracle Sign:

– Sign(vk,m): This oracle outputs a signature on m
valid under the verification key vk. The requested
message is added to the signed messages set SM.

ExpeufS,A(K)
1. param← Setup(1K)
2. (vk, sk)← KeyGen(param)
3. (m∗, σ∗)← A(vk, Sign(vk, ·))
4. b← Verif(vk,m∗, σ∗)
5. IF m∗ ∈ SM RETURN 0
6. ELSE RETURN b

2.2 Standard Cryptographic Primitives 11

The probability of success against this game is denoted by

SucceufS,A(K) = Pr[ExpeufS,A(K) = 1], SucceufS (K, t) = max
A≤t

SucceufS,A(K).

?

Part I

Building Hash proof System

12

Chapter 3

Hash Proof Definition

Contents
3.1 Definition . 13

3.2 Various Subtypes . 14

3.2.1 GL-SPHF . 14

3.2.2 CS-SPHF . 15

3.2.3 KV-SPHF . 15

3.1 Definition

Smooth Projective Hash Functions were introduced by Cramer and Shoup [CS02]. They allow to evaluate
a function of an input using two different ways, either using a trapdoor corresponding to the public key of
the function, or using a witness showing that the input fulfills some properties. Of course, the evaluation
should match if and only if the trapdoor is the valid one, and the input does indeed fulfills the property
for the said witness.

More formally, a projective hashing family is a family of hash functions that can be evaluated in two
ways: using the (secret) hashing key, one can compute the function on every point in its domain, whereas
using the (public) projected key one can only compute the function on a special subset of its domain.
Such a family is deemed smooth if the value of the hash function on any point outside the special subset
is independent of the projected key. The notion of SPHF has found applications in various contexts in
cryptography (e.g. [GL03,Kal05,ACP09]):

Smooth Projective Hashing System
p A Smooth Projective Hash Function over a language L ⊂ X, onto a set H, is defined by five algorithms
(Setup,HashKG,ProjKG,Hash,ProjHash):

• Setup(1K) where K is the security parameter, generates the global parameters param of the scheme,
and the description of an NP language L ;

• HashKG(L , param), outputs a hashing key hk for the language L ;
• ProjKG(hk, (L , param),W), derives the projection key hp, possibly depending on the wordW [GL03,

ACP09] thanks to the hashing key hk.
• Hash(hk, (L , param),W), outputs a hash value v ∈ H, thanks to the hashing key hk, and W
• ProjHash(hp, (L , param),W,w), outputs the hash value v′ ∈ H, thanks to the projection key hp

and the witness w that W ∈ L .

y

In the following, we consider L as a hard-partitioned subset of X, i.e. it is computationally hard to
distinguish a random element in L from a random element in X \L .

A Smooth Projective Hash Function SPHF should satisfy the following properties:

• Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing keys hk and
associated projection keys hp we have Hash(hk, (L , param),W) = ProjHash(hp, (L , param),W,w).

13

14 Hash Proof Definition 3.2

• Smoothness: For all W ∈ X \L the following distributions are statistically indistinguishable:

∆0 =

{
(L , param,W, hp, v)

param = Setup(1K), hk = HashKG(L , param),
hp = ProjKG(hk, (L , param),W), v = Hash(hk, (L , param),W)

}
∆1 =

{
(L , param,W, hp, v)

param = Setup(1K), hk = HashKG(L , param),

hp = ProjKG(hk, (L , param),W), v
$← H

}
.

This is formalized by

Advsmooth
SPHF (K) =

∑
V ∈H

∣∣∣∣Pr
∆1

[v = V]− Pr
∆0

[v = V]

∣∣∣∣ is negligible.

• Pseudo-Randomness: If W ∈ L , then without a witness of membership the two previous distri-
butions should remain computationally indistinguishable: for any adversary A within reasonable
time

AdvprSPHF,A(K) = |Pr
∆1

[A(L , param,W, hp, v) = 1]− Pr
∆0

[A(L , param,W, hp, v) = 1]| is negligible.

Pseudo-Randomness comes directly from the Smoothness and the Hard-Partitioned Subset.
Abdalla et al. [ACP09] explained how to combine SPHF to deal with conjunctions and disjunctions

of the languages. In the following we simply recall those results:
Let us assume we have two Smooth Projective Hash Functions, defined by SPHF1 and SPHF2,

on two languages, L1 and L2 respectively, both subsets of X, with hash values in the same group
(H,⊕). We note W an element of X, wi a witness that W ∈ Li, hki = HashKGi(Li, param) and
hpi = ProjKGi(hki, (Li, parami),W).

We can then define the SPHF on L = L1 ∩L2, where w = (w1, w2) as:
• Setup(1K), param = (param1, param2), and L = L1 ∩L2;
• HashKG(L , param): hk = (hk1, hk2)
• ProjKG(hk, (L , param),W): hp = (hp1, hp2)
• Hash(hk, (L , param),W): Hash1(hk1, (L1, param1),W)⊕ Hash2(hk2, (L2, param2),W)
• ProjHash(hp, (L , param),W,w = (w1, w2)):

ProjHash1(hp1, (L1, param1),W,w1)⊕ ProjHash2(hp2, (L2, param2),W,w2)

We can also define the SPHF on L = L1 ∪L2, where w = w1 or w = w2 as:
• Setup(1K), param = (param1, param2), and L = L1 ∪L2;
• HashKG(L , param): hk = (hk1, hk2)
• ProjKG(hk, (L , param),W): hp = (hp1, hp2, hp∆) where

hp∆ = Hash1(hk1, (L1, param1),W)⊕ Hash2(hk2, (L2, param2),W)

• Hash(hk, (L , param),W): Hash1(hk1, (L1, param1),W)
• ProjHash(hp, (L , param),W,w): If W ∈ L1, ProjHash1(hp1, (L1, param1),W,w1),

else (if W ∈ L2), hp∆ 	 ProjHash2(hp2, (L2, param2),W,w2)

Remark It should be noted, that while this construction of an SPHF for L1 ∪L2 is correct, it can not
always be used in a black-box way for some applications, because a dishonest verifier could provide an
invalid hp∆ without being detected and be able to secretly test if a word belongs to L1.

3.2 Various Subtypes

Observing the various types of SPHF existing in the literature, we provided a classification of Smooth
Projective Hash Function in [BBC+13b] named after the authors who used them in the given way for
the first time.

3.2.1 GL-SPHF

Those SPHF are named after [GL03], they correspond to the basic definition of an SPHF. The word W
is used as an input of the ProjKG function, and they remain smooth for any word outside the language.

The smoothness requires the following distributions to be close.

3.2 Various Subtypes 15

∆0 =

{
(hp, v) hk = HashKG(L), hp = ProjKG(hk,L ,W), v = Hash(hk,L ,W)

}
∆1 =

{
(hp, v) hk = HashKG(L), hp = ProjKG(hk,L ,W), v

$← H
}
.

Such SPHFs seem to be the baseline. If a language is manageable with an SPHF, then there exists
a corresponding GL-SPHF. This ease of construction has however a drawback, as the projection key is
dependent on the word, this often induces an extra flow in the protocols.

ElGamal Cramer Shoup
W hrM, gr hrM, gr1, g

r
2, (cd

χ)r

hk α, β
$← Zp α, β, γ, δ

$← Zp
hp hαgβ hαgβ1 g

γ
2 (cdχ)δ

v (W1/M)αW β
2 (W1/M)αW β

2 W
γ
3 W

δ
4

Figure 3.1: GL-SPHF over the language of valid encryption of M

One should pay attention to the fact that χ = H(W1,W2,W3, . . .) so hp is dependent on W .

3.2.2 CS-SPHF

Those SPHF are named after [CS02] as the original definition is close to the one we use to define this
category 1. On one hand, the projection key is constructed before seeing the word W , on the other the
word W has to be independent from the projection key.

This is described by the following distributions:

∆0 =

{
(hp, v) hk = HashKG(L), hp = ProjKG(hk,L ,⊥), v = Hash(hk,L ,W)

}
∆1 =

{
(hp, v) hk = HashKG(L), hp = ProjKG(hk,L ,⊥), v

$← H
}
.

This category is here for ”historical” reasons. There is no apparent benefit from constructing such
SPHF, because on one hand, the projection key has to be constructed without knowing the word which
makes it hard to do, but the security only considers words chosen non-adaptively by the adversary which
is underwhelming.

3.2.3 KV-SPHF

This last category is named after [KV11]. This considers SPHF where the projection key is independent
from the word, and where the smoothness need to hold even for an adaptively chosen word W = f(hp).

∆0 =

{
(hp, v) hk = HashKG(L), hp = ProjKG(hk,L ,⊥), v = Hash(hk,L , f(hp))

}
∆1 =

{
(hp, v) hk = HashKG(L), hp = ProjKG(hk,L ,⊥), v

$← H
}
.

Such SPHF are harder to build than GL-SPHF, however due to the independence of the projection
key and the security holds even in the presence of adaptively chosen words, this helps to reduce the
number of round involved in a protocol of allow synchronous flows.

While [KV11] builds such SPHF over a CPA language (enhanced to CCA with Naor Yung [NY90]
transform), it has been an open problem to build one over a CCA-2 scheme à la Cramer Shoup until
our result from [BBC+13b]. It is not clear whether all languages manageable via a GL-SPHF can also

16 Hash Proof Definition 3.2

ElGamal Cramer Shoup
W hrM, gr hrM, gr1, g

r
2, (cd

χ)r

hk α, β
$← Zp α1, α2, β, γ, δ

$← Zp
hp hαgβ hα1gβ1 g

γ
2 c
δ, hα2dδ

v (W1/M)αW β
2 (W1/M)α1+χα2W β

2 W
γ
3 W

δ
4

Figure 3.2: KV-SPHF over the language of valid encryption of M

be handled through a KV-SPHF. As a rule of thumb, as long as a language is not quadratic (or worse),
then there is a way to build a KV-SPHF.

One can see that the SPHF for Cramer Shoup is a little more involved in this case, the projection
key requires 2 elements instead of 1, this split was the key in producing a projection key hp not requiring
the knowledge of W (as χ is only used in the final hash computation).

HashKG hk Hash

x ∈ L

v

ProjKG

hp ProjHash

w

v′

v = v′ if R(x ,w) = 1

hk $← HashKG()

v ← Hash(hk, x)

hp ← ProjKG(hk)

v′ ← ProjHash(hp, x ,w)

Figure 3.3: Synthetic view of a (GL) SPHF evaluation

?

1To nitpick, the original definition considers the smoothness for a random word outside the language, while ours holds
for any word outside the language

Chapter 4

Languages and Underlying
Hypotheses

Contents
4.1 Side Result: SPHF for an encryption of a solution of an NP problem . . . 17

4.2 Elliptic Curves . 18

4.2.1 Reminder on Matrix Notation . 18

4.2.2 Languages à la Groth Sahai . 19

4.2.3 Structure Preserving Smooth Projective Hash Function 20

4.3 Euclidean Lattices . 21

4.3.1 First solution (Universality, Approximate Correctness). 22

4.3.2 Second solution (Imperfect Universality, Statistical Correctness). 22

4.3.3 Mind the Gap . 23

4.4 And more . 23

4.4.1 A Code-Based Encryption: RQC . 24

4.4.2 The associated Hash Proof . 24

4.5 Expanding Languages . 25

SPHF are built for a given language. A common result with SPHF is that contrarily to Zero-
Knowledge, there exist languages in NP that cannot be handled by an SPHF [GGSW13]1, in other
words, there exists languages where there is no secure SPHF whose sole witness are the solution to a
given problem.

4.1 Side Result: SPHF for an encryption of a solution of an NP problem

This is not a huge constraint however, because one can easily show that assuming the existence of an
encryption scheme E manageable with an SPHF so there exists a SPHF SE for the language LE , then
one can build an SPHF for the language of encryption of a solution of the problem.

This has never been explicitly detailed, hence we are going to sketch the idea of this technique, which
is similar to the original proof to show there exist a Zero-Knowledge Proof for all NP. For this we consider
a 3-coloring instance. 3-coloring being NP-Complete this would lead to the conclusion. For every edge
in the graph, we are going to build a SPHF proving the linked nodes are different. This can be done in
two ways:
• Either one can check the validity of the computation of the Projective hash computed for SE over

LE . In this case, one can use the methodology described in [BCV15], recalled 4.5, page 25, to
build a SPHF that fails to prove the the join node are identical.

• Or, one has to take the long way round, and build an SPHF for the disjunction of the various cases
((Color 1 AND Color 2) OR (Color 1 and Color 3) OR ... OR (Color 3 and Color 2))

One can then build an SPHF for the conjunction of those inner SPHF (one for each edge) together
with a conjunction SPHF for the language ”This is an encryption of a valid color” (again this can be done

1SPHF leading to trivial Witness Encryption, this would mean Witness Encryption for all NP which requires a collapse
of the polynomial hierarchy

17

18 Languages and Underlying Hypotheses 4.2

with a disjunction of cases (Color 1 OR Color 2 OR Color 3)) which leads to the conclusion. Because,
under the smoothness of the various inner SPHF, the final one is also smooth.

This emphasizes the fact, that, in addition to being natural, building an SPHF compatible with a
commitment seems to be the best way to design hash proof systems instead of tackling languages directly.

4.2 Elliptic Curves

In [EHK+13], the authors introduced the matrix notation to generalize constructions over elliptic curves.
This fits really well with most (if not all) known constructions of SPHF, and allowed us to introduce
Structure Preserving Smooth Projective Hash Functions [BC16].

4.2.1 Reminder on Matrix Notation

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1K returns a description
G = (p,G1,G2,GT , e, g1, g2) of asymmetric pairing groups where G1, G2, GT are cyclic groups of order p
for a K-bit prime p, g1 and g2 are generators of G1 and G2, respectively, and e : G1×G2 is an efficiently
computable (non-degenerate) bilinear map. Define gT := e(g1, g2), which is a generator in GT .

We use implicit representation of group elements as introduced in [EHK+13]. For s ∈ {1, 2, T} and
a ∈ Zp define [a]s = gas ∈ Gs as the implicit representation of a in Gs. More generally, for a matrix
A = (aij) ∈ Zn×mp we define [A]s as the implicit representation of A in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganm

s

 ∈ Gn×ms

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs be an element in
Gs. Note that from [a]s ∈ Gs it is generally hard to compute the value a (discrete logarithm problem in
Gs). Further, from [b]T ∈ GT it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion
problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zp, one can efficiently compute [ax]s ∈ Gs.
Further, given [a]1, [b]2 one can efficiently compute [ab]T using the pairing e. For a,b ∈ Zkp define

e([a]1, [b]2) := [a>b]T ∈ GT . We recall the definition of the matrix Diffie-Hellman (MDDH) assump-
tion [EHK+13].

Matrix Distribution
p Let k ∈ N. We call Dk a matrix distribution if it outputs matrices in Z(k+1)×k

p of full rank k in
polynomial time. y

Without loss of generality, we assume the first k rows of A
$← Dk form an invertible matrix, we denote

this matrix A, while the last line is denoted A. The Dk-Matrix Diffie-Hellman problem is to distinguish
the two distributions ([A], [Aw]) and ([A], [u]) where A

$← Dk, w
$← Zkp and u

$← Zk+1
p .

Dk-Matrix Diffie-Hellman Assumption Dk-MDDH
p Let Dk be a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-Hellman (Dk-
MDDH) Assumption holds relative to GGen in group Gs if for all PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Aw]s) = 1]− Pr[D(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G $← GGen(1λ), A
$← Dk,w $← Zkp,u

$← Zk+1
p . y

For each k ≥ 1, [EHK+13] specifies distributions Lk, Uk, . . . such that the corresponding Dk-MDDH
assumption is the k-Linear assumption, the k-uniform and others. All assumptions are generically
secure in bilinear groups and form a hierarchy of increasingly weaker assumptions. For k = 2, where
a1, . . . , a6

$← Zp, we have:

L2 : A =

a1 0
0 a2

1 1

 U2 : A =

a1 a2

a3 a4

a5 a6

 .

HPS and beyond

Building a hash proof system for Matrix Diffie Hellman languages is natural. The languages often
consider whether a word W lives in an affine space of the form [Ar + b]∗ for given [A,b]∗.

4.2 Elliptic Curves 19

In these cases, building the corresponding hash proof system boils down to sampling a appropriately
sized scalar vector hk, publishing hp = [hk · A]∗, on one hand the hashing algorithm computes v =
[hk · (W − b)]∗, while the projected hashing algorithm simply computes v′ = [hp · r]∗.

ElGamal Cramer Shoup
W [hr, r] [hr, r, g2r, (c+ χd)r]

hk α
$← Z1×2

p α
$← Z1×4

p

hp [α(h, 1)>] [α(h, 1, g2, c+ χd)>]
v [αW] [αW]

Figure 4.1: GL-SPHF over the language of valid encryption of 1G in matrix notation

4.2.2 Languages à la Groth Sahai

In [GS08], Groth and Sahai proposed a methodology to build efficient non-interactive zero-knowledge
proofs of knowledge in the standard model for pairing product equations.

In their definition a pairing product equation is an equation of the form:

[
∑
i

XiBi +
∑
j

AjYj +
∑
i

∑
j

XiYjγij]T =
∑
k

[AkBk]T

Where, [A∗]1 are public elements in G1, [B∗]2 in G2, γ∗ are public scalars while [X∗]1, [Y∗]2 are
unknown in G1 (resp G2).

The Groth Sahai methodology can also work for scalar equation or multi exponent equation (ie where
one side of the unknowns are in a group, and the other are scalars).

In [BBC+13a], we have shown that Smooth Projective Hash Functions can be used to handle the
same kind of languages, and in fact a little bit more:

[
∑
i

XiBi +
∑
j

AjYj +
∑
i

∑
j

XiYjγij]T =
∑
k

[Ckzk]T +
∑
i

∑
j

∑
`

[XiBjzij` +AiYjz′ij`]T +
∑
`

[Z`]T

Where, [A∗]1 are public elements in G1, [B∗]2 in G2, γ∗ are public scalars while [X∗]1, [Y∗]2, [Z∗]T
are unknowns in G1 (resp G2, GT), and z∗ unknown scalars in Zp.

The construction rely on the fact that a set of X ,Y,Z, z is a solution if and only if every terms cancels
out nicely so we are going to commit to every single variable with a linearly homomorphic commitment,
build SPHF for the language of ”Valid encryption of a variable” while forcing that the part of the hash
key working directly on the encryption part carrying the variable (hrM in ElGamal for instance) is the
same for every SPHF. This way if everything is indeed a valid encryption, one would obtain the left side
of the equation raised to this value, and so we simply need to check whether this is equal to the right
side raised to same one.

For example, let us consider the equation e(f,Y1) ·e(g,Y2) = 1T , that checks whether someone knows
two elements in G2 with the same discrete logarithms that two in G1. 2

Our methodology would proceed as follows:

• First commit to both variables: W1 = [hr + Y1, r]2,W2 = [hs+ Y2, s]2
• Then the verifier runs HashKG,ProjKG: λ, γ1, γ2

$← Z∗p, set hk1 = (λ, γ1), hk2 = (λ, γ2), hp1 =
[hλ+ γ1]2, hp2 = [hλ+ γ2]2

• The user runs ProjHash(hp, (r, s)) and obtains v′ = [fhp1r + hp2s]T
• While the verifier runs Hash(hk,W) : v = [fhk1W1 + hk2W2]T = v′ + [fλY1 + λY2]T
Those two values are equals if and only if the equation is fulfilled. It should be noted, that as long as

there is no quadratic term, the underlying SPHF is KV, allowing the verifier to compute (and publish)
the projection key before the interaction.

2If one does not forbid the trivial case Y1 = Y2 = 0, this equation has no particular merit besides being a simple
example.

20 Languages and Underlying Hypotheses 4.2

SPHF SP-SPHF

MDDH [Br] [Br]1
Witness w r [r]2
hk λ

$← Z1×k
p λ

$← Z1×k
p

hp [hp = λ ·B] , [hp = λ ·B]1
Hash(hk,u) [λ ·W] [λ ·W]T
ProjHash(hp,u, w) [hp · r] [hp · r]T

Figure 4.2: Example of (naive) conversion of SPHF into SP-SPHF (matricial notations)

4.2.3 Structure Preserving Smooth Projective Hash Function

Smooth Projective Hash Functions are not Zero-Knowledge, however they end up being often more
efficient. In [BC16], we aimed at obtaining the best of both worlds by allowing Hash Proof System to
use Zero Knowledge Proofs as witnesses. In other world, contrary to what was currently done instead
of using a scalar as a group element, one could now use directly group elements, like for example Groth
Sahai proofs of knowledge

When using SPHF with commitments to achieve an implicit decommitment, the language is usually
defined on group elements, with projection keys being group elements, and witnesses being scalars. While
in several applications, this has already lead to efficient constructions, the fact that witnesses have to
be scalars (and in the particular case of commitments, the randomness used to commit) leads to drastic
restrictions when trying to build protocols secure against adaptive corruptions in the UC framework.

In the same spirit as Structure-Preserving Signature [AFG+10], we proposed the notion of Structure-
Preserving Smooth Projective Hash Functions (SP-SPHF), where both words, witnesses and projection
keys are group elements, and hash and projective hash computations are doable with pairings in the
context of bilinear groups.

We show how to transform every previously known pairing-less construction of SPHF to fit this
methodology, and then propose several applications in which storing a group element as a witness allows
to avoid the drastic restrictions that arise when building protocols secure against adaptive corruptions
in the UC framework with a scalar as witness. Asking the witness to be a group element enables us to
gain more freedom in the simulation (the discrete logarithm of this element and / or real extraction from
a commitment). For instance, the simulator can always commit honestly to a random message, since it
only needs to modify its witness in the equivocation phase. Furthermore, it allows to avoid bit-per-bit
construction. Such design carries similarity with the publicly verifiable MACs from [KPW15], where the
pairing operation allows to relax the verification procedure.

Structure-Preserving Smooth Projective Hash Functions
p

A Structure-Preserving Smooth Projective Hash Function over a language L ⊂ X onto a set H is
defined by 4 algorithms (HashKG,ProjKG,Hash,ProjHash):
• HashKG(L , param), outputs a hashing key hk for the language L ;
• ProjKG(hk, (L , param),W), derives the projection key hp thanks to the hashing key hk.
• Hash(hk, (L , param),W), outputs a hash value H ∈ H, thanks to the hashing key hk, and W
• ProjHash(hp, (L , param),W,w), outputs the value H ′ ∈ H, thanks to hp and the witness w that
W ∈ L .

Remark We stress that, contrarily to classical SPHF, both hp, W and more importantly w are base
group elements, and so live in the same space.

y

Of course, one can again derive the three previous subtypes KV,GL,CS depending on when the
word W is sampled and used in the algorithm.

It should be noted that converting an SPHF to an SP-SPHF is easily done, and does not weaken the
subgroup decision assumption (k-MDDH in the following) linked to the original language.

We give in Figure 4.2, page 20 an example of conversion from the SPHF over a valid MDDH to an
SP-SPHF for such a tuple.

4.3 Euclidean Lattices 21

One can see two things. Besides adding a pairing the transformation does not weaken the underlying
security. More importantly, the general structure is the same, hence as we have shown in [BC16], there
is no drawbacks in using group elements as witnesses, and the smoothness is going to be proven in the
same way.

4.3 Euclidean Lattices

Post Quantum Cryptography opens new play fields for Cryptographers to instantiate classical tools.
One of the most promising family of problems is around Learning with Error (LWE).
Until our result, there was only one construction of SPHF for a lattice-based encryption scheme in

the standard model, given by Katz and Vaikuntanathan [KV09]. There was also a subsequent work by
Zhang and Yu who propose an interesting new lattice-based SPHF in [ZY17]. But the language of the
SPHF relies on simulation-sound non-interactive zero-knowledge proofs which we do not know how to
construct solely under lattice-based assumptions without random oracle.

Unfortunately, the only standard-model lattice-based SPHF construction in [KV09] has a main dra-
wback: the language of the SPHF is not simply defined as the set of valid standard LWE ciphertexts.
Naturally, the set of valid ciphertexts of 0 should correspond to the set of ciphertexts close to the lattice
defined by the public key. Instead, their language includes all the ciphertexts c such that at least one
integer multiple is close to the public lattice. This makes the decryption procedure very costly (about
q trapdoor inversions), and forbids the use of super-polynomial modulus q. This limitation is a serious
obstacle to the construction of a stronger type of SPHF introduced in [KV11], namely word-independent
SPHF for which the projection key (which can be seen as the public key of the SPHF) does not depend
on the ciphertext c (a.k.a., word in the SPHF terminology).3

We proposed to tackle this issue in [BBDQ18]. Here is a short technical overview of our main
contribution, namely the constructions of new lattice-based SPHFs.

We focus on the language of dual-Regev ciphertexts c of 0: c = As + e ∈ Zmq , where A ∈ Zm×nq is a
public matrix, while s ∈ Znq and e ∈ Zmq correspond to the randomness of the ciphertext. The vector e
is supposed to be small, i.e., c is close to the q-ary lattice Λ generated by A.

Intuitively, an SPHF allows a prover knowing s and e to prove to a verifier that c is indeed a
ciphertext of 0. The naive and natural construction works as follows (of course we only obtain a bit-
SPHF, classical techniques can then be used to a full-fledged SPHF). The verifier generates a small
random vector hk = h ∈ Zmq called a hashing key. It then “hashes” the ciphertext into a hash value
H = R(〈h, c〉) ∈ {0, 1}, where R is a rounding function from Zq to {0, 1} to be chosen later. The verifier
also derives from hk = h, a projection key hp = p = Ath ∈ Znq that it sends to the prover. The prover
can then compute the projected hash value H ′ = R(〈p, s〉) from the projection key p and the randomness
of the ciphertext s and e. It can send this projected hash value to the verifier which will accept the
proof, if H ′ matches its hash value H.

We remark that if indeed c = As + e with e small enough (recall that h is small as well):

〈h, c〉 = htAs + hte ≈ htAs = 〈p, s〉 .

Hence, if R is carefully chosen, we can ensure that with high probability (e.g., at least 3/4), H = H ′, and
the verifier will accept the prover’s “proof.” This property is called approximate correctness. An SPHF
also needs to satisfy a security property to be useful, called smoothness or universality, which ensures
that if c is far from the q-ary lattice Λ generated by A (in particular if it is an encryption of 1), then
given the projection key p (and A and c), the prover cannot guess the hash value H with probability
more than 1/2 + negl(n). In [KV09], Katz and Vaikuntanathan argued universality for ciphertexts c,
for which every multiple of c is far from the lattice Λ. To be useful in their PAKE application, the
decryption procedure of the encryption scheme therefore needs to be tweaked to try to decrypt not
only the ciphertext itself but also all its multiples. In particular, their construction cannot work with
super-polynomial moduli.

The question we focused on was whether universality holds without this tweak. In other words, is
the condition that jc is far from Λ for all j 6= 0 truly necessary or is it is an artifact of the proof?

Harmonic analysis. The core of our work consists in using harmonic analysis to better understand
the caveat of [KV09], namely that universality is only proven when all the multiples of the ciphertext
are far from the lattice. For that, we extend the rounding function R to a q-periodic signal R→ R.

3In this section, I will use Word-independent SPHF instead of KV-SPHF to avoid the confusion between the lattice-
based [KV09] and the initial word-independent SPHF in [KV11].

22 Languages and Underlying Hypotheses 4.3

− q
2 − q

4
q
4

q
2

0.5

1

x

r(x)

(a) r(x) = 1
2

+ 1
2

cos
(

2πx
q

) − q
2 − q

4
q
4

q
2

0.5

1

x

r(x)

(b) r(x) = r](x) = 1 + b2x/qe mod 2
(naive rounding)

− q
2 − q

4
q
4

q
2

1/(2T)
0.5

1

±T
x

r(x)

(not to scale: T/q and 1/T are negligible)

(c) r(x) = r[(x) (used to smooth r])

− q
2 − q

4 ± T
q
4 ± T

q
2

0.5

1

x

r(x)

(not to scale: T/q and 1/T are negligible)

(d) r(x) = (r] � r[)(x)

Figure 4.3: Probability that the rounding functions R(x) output 1

We proceeded to a general analysis, which shows that universality holds for ciphertexts c such that
its multiples jc are far away from the lattice Λ, for all non-zero integers j corresponding to non-zero real
harmonics of the rounding signal R.

This unravels the causes of the caveat in [KV09]: the weight of the j-th harmonic of the naive
rounding function R : x ∈ Zq 7→ b2x/qe mod 2 (seen as a q-periodic signal, as in 4.3a) is as large as
Θ(1/j) for odd integers j.

4.3.1 First solution (Universality, Approximate Correctness).

Having identified the source of the caveat, it becomes clear how to repair it: the rounding should be
randomized, with a weight signal for which only the first harmonic is non-zero (in addition to the average),
namely with a pure cosine weight:

Pr[R(x) = 1] :=
1

2
+

1

2
cos

(
2πx

q

)
.

This choice ensures universality as soon as just 1 · c = c is far from the lattice Λ.
This solution nevertheless only provides approximate correctness (correctness holds with probability

3/4 + o(1)), which is also problematic for some applications. This can be solved using correctness
amplification via error-correcting codes, but at the price of preventing the resulting SPHF to be word-
independent.

4.3.2 Second solution (Imperfect Universality, Statistical Correctness).

In our second instantiation, we therefore proceed to construct an almost-square rounding function, �
denotes the convolution operator), which offers statistical correctness4 and imperfect universality (namely
the probability that a prover knowing only hp = p can guess the hash value H is at most 1/3 + o(1)).
This instantiation requires a more subtle analysis, taking account of destructive interferences.

We can then amplify universality to get statistical universality (i.e., the above probability of guessing
is at most 1/2 + negl(n) as in our first solution) while keeping a statistical correctness. Contrary to the
correctness amplification, this transformation preserves the independence of the projection key from the
ciphertext. In particular, if the ciphertexts are from an IND-CPA scheme such as dual-Regev, then we
get the first word-independent SPHF over a lattice-based language.

4More precisely, the probability of error is poly(n, σ)/q, which is negl(n) for super-polynomial approximation factors q/σ.

4.4 And more 23

We remark that our word-independent SPHF uses a super-polynomial modulus q, to get statistical
correctness. It seems hard to construct such an SPHF for a polynomial modulus, as a word-independent
SPHF for an IND-CPA encryption scheme directly yields a one-round key exchange (where each party
sends a ciphertext of 0 and a projection key, and where the resulting session key is the xor of the two
corresponding hash values) and we do not know of any lattice-based one-round key exchange using a
polynomial modulus.

4.3.3 Mind the Gap

Even if we managed to solve the issue of building word-independent SPHF, and while doing so, we also
allowed to use a simple encryption with a less tedious decryption process, there is still a major difference
between vanilla SPHF, and these ones. The languages considered are now different in the smoothness
and the correctness. In other words, the language considered for the correctness (and so honest user) is
only a subset a subset of the language of words in the language for the smoothness.

Languages:

We consider a family of languages (Llpar,ltrap)lpar,ltrap indexed by some parameter lpar and some trapdoor

ltrap, together with a family of NP languages (L̃lpar)lpar indexed by some parameter lpar, with witness

relation R̃lpar, such that:

L̃lpar = {x ∈ Xlpar | ∃w , R̃lpar(x ,w) = 1} ⊆ Llpar,ltrap ⊆ Xlpar ,

where (Xlpar)lpar is a family of sets. The trapdoor ltrap and the parameter lpar are generated by a
polynomial-time algorithm Setup.lpar which takes as input a unary representation of the security para-
meter n. We suppose that membership in Xlpar and R̃lpar can be checked in polynomial time given lpar
and that membership in Llpar,ltrap can be checked in polynomial time given lpar and ltrap. The parameters
lpar and ltrap are often omitted when they are clear from context.

We are mostly interested in languages of ciphertexts.

Languages of Ciphertexts Let (KeyGen,Encrypt,Decrypt) be a labeled encryption scheme. We define
the following languages (Setup.lpar = KeyGen and (ltrap, lpar) = (dk, ek)):

L̃ = {(label, C,M) | ∃ρ, C = Encrypt(ek, label,M ; ρ)} ,
L = {(label, C,M) | Decrypt(dk, label, C) = M} ,

where the witness relation R̃ is implicitly defined as: R̃((label, C,M), ρ) = 1 if and only if C =
Encrypt(ek, label,M ; ρ).

Where in classical cryptography, we had L̃ = L , here with Euclidian Lattices, there is a gap. For
most applications, one has to be careful during the proof 5, but in many cases the generic transformations
still work once this discrepancy is taken into account.

This kind of problem seems to be inherent to the metric used. While studying new protocols on post-
quantum cryptography, we had the idea to completely change the metric to have a different granularity
and try to instantiate SPHF over Rank-Metric (code-based) cryptography.

4.4 And more

In addition to our lattice based constructions, we have also developed code based constructions for the
NIST competition. This area of cryptography can be seen as behind in term of functionality when
compared to lattice-based cryptography. However due to the existence of different based metrics, it
allows a more fine-grained control over the noise.

With this in mind, we are building an hash proof system compatible with one of our contender for
encryption in the NIST competition. We manage to show that not only we can build an hash proof
system, but also thanks to the granularity of the underlying metric we manage to get rid of the gray area
between the languages involved in the correctness, and the smoothness contrarily to the lattices results.

We now briefly sketch both the encryption, and the associated Hash Proof. Underlying ideas are
close to the (naive) lattice schemes, except we have a way to test precisely if a word is well-formed, hence
we get rid of corner cases living in the gap between correctness and smoothness.

5Intuitively, the simulator is going to try and process the adversary input, so he is going to use a trap to decrypt the
input ciphertext, however this does not imply that the adversary sent a valid encryption

24 Languages and Underlying Hypotheses 4.4

4.4.1 A Code-Based Encryption: RQC

RQC is a code-based IND-CCA2 encryption,we submitted to the NIST Post Quantum ”Competition”.
Its security relies on the rank syndrome decoding problem without any additional assumption regarding
the indistinguishability of the family of codes used [AMBD+18]. It is based on an IND-CPA construction
denoted RQC.PKE (see figure 4.4) on top of which the HHK transformation [HHK17] is applied in order
to obtain an IND-CCA2 cryptosystem.

RQC uses two types of codes: a Gabidulin code of generator matrix G denoted C and a random
[2n, n] quasi-cyclic code of parity-check matrix (Id rot(h)) with h a random element of V. One should
note that the matrix G is public, hence the security of the scheme does not rely on the knowledge of the
code C used.

• Setup(1K): Generates and outputs the global parameters param = (n, k, δ, w,wr, we) ∈ N6.

• KeyGen(param): Sets R = Fqm [X]/(Xn − 1). Samples h
$← R, the generator matrix G ∈

Mk,n(Fqm) of C, sk = (x,y)
$← R2 such that ω(x) = ω(y) = w, sets pk = (h, s = x + h · y),

and returns (pk, sk).

• Encrypt(pk,m): Generates r3
$← R, r = (r1, r2)

$← R2 such that ω(r3) = wr3 and ω(r1) =
ω(r2) = wr, sets c1 = r1 + h · r2 and c2 = mG + s · r2 + r3, returns c = (c1, c2).

• Decrypt(sk, c): Returns C.Decode(c2 − y · c1).

Figure 4.4: Description of RQC.PKE

The correctness of RQC relies on the decoding capability of the Gabidulin code C. While the indis-
tinguishability relies on a decisional version of the Rank Syndrome Decoding Problem.

4.4.2 The associated Hash Proof

At a high level, one can view the scheme as a sort of a noisy ElGamal where h, s play the role of the
generators in the encryption key, and y the secret decryption key. With this in mind, we built an SPHF
accordingly.

• Setup(1K) : Given the security parameter K, generates the parameters param of the scheme
namely (n,m, k, q, wr, wα, wx) ∈ N7, G ∈ Mk,n(Fqm) a generator matrix of a Gabidulin code

C, h
$← V and s = x + h · y with (x,y)

$← V2 such that ω(x) = ω(y) = wx.

• HashKG(Lm, param) : Samples (α1,α2,α3,α4)
$← V4 such that ∀i ∈ [[1, 4]],

Supp(αi) = Eα with dim(Eα) = wα. Returns hk = (α1,α2,α3,α4).
• ProjKG(hk, (Lm, param)) : Returns hp = ρ = h ·α1 + s ·α2 +α3.
• Hash(hk, (Lm, param),W) : Returns v = α1 · c1 +α2 · (c2 −mG) +α4.

• ProjHash(hp, (Lm, param),W, w) : Sample r4
$← V such that Supp(r4) = Er with dim(Er) =

wr. Returns v′ = ρ · r2 + r4

Figure 4.5: A gapless code-based HPS

We then showed that for a correct choice of parameters, we can ensure that for well-formed ciphertexts
in the language that v and v’ were close enough, while for well-formed ciphertexts outside the language
v was random under the decisional rank syndrome decoding.

Now, the main difference when compared with the lattice based approach is that we can check whether
a ciphertext is well-formed. At least two natural ways come to mind:
• One can use a Stern-like Non-Interactive Zero-Knowledge proof. This allows every one to check

publicly that the prover knows the randomness used in the encryption, while giving away the weight
/ support of the randomness hence showing it is not too big. On the plus side, this technique
allows to check whether a word is a valid candidate before computing the hash value, however it is
inefficient and requires to rely on the Random Oracle Model.

• Another solution that may be used when the prover sends the projected hash, is to compute
the difference between the hash value, and the projected hash. Then using some LRPC decoding

4.5 Expanding Languages 25

technique the server can recover the randomness used, and checks whether it has the correct weight
/ support. The nice thing here is that this works in the standard model, however the SPHF can
no longer be used with privacy in mind, and the verifier has to recover everything to be able to be
convinced.

4.5 Expanding Languages

A major problem in cryptography is proving that we do not belong to a set. While proofs of membership
have been known for years, proving a ”non”-membership remains often complicated.

In [BCV15], we revisited [KZ09] and after showing a flaw in their design, we corrected their con-
struction to handle Non-Interactive Zero-Knowledge Proofs of Non-Membership, but also to be construct
Implicit Proofs of Non-Membership.

From a high level, the construction consists in building the proof of membership and seeing that
it fails. There is however one caveat, one must also prove/check that the invalid proof was correctly
computed (Otherwise it would be easy for anyone to pick a random value and say that it fails).

So the methodology leads to proving (and failing) that our words is in the language, and then proving
(and succeeding) that this proof was correctly built.

Luckily as SPHF are often simple affine functions, it is easy to build another SPHF over them,
checking that the projected Hash value was correctly computed.

To show that a word committed into v is not in a language described by Lp, one ends up doing the
following (cf Figure 4.6, page 25):

Prover Verifier
V,v, wv Lp,Lu

(hpv , hkv) := (ProjKG,HashKG)(Lp))

Hv := Hash(hkv ,Lp, V)
V = (hpv , Hv ,v)
−−−−−−−−−−−−−−−→ H′v := Lu � hpv 6

?= Hv
hpu←−−−−−−−−−−−−−−− (hpu, hku) := (Γu(V)� αu, αu)

H′u := (wv, hkv)� hpu
H′u−−−−−−−−−−−−−−−→ H′u

?= Θu(V)� hku.

Figure 4.6: Generic SPHF-based proof of exclusion

Where the first SPHF is on the language described by Lp while the other one is based on the
language of a correct computation between a hash value, a projection key and a ciphertext (as there is
a dependency between those two terms it seems improbable to be able to do better in this case).

A more concrete example. In order to explain the previous formalism, let us now give a more
concrete example, with a language described by an ElGamal encryption of a word U . The prover
possesses a word V , the verifier the word U and publishes an ElGamal ciphertext of U : Lp = (hsU, gs).
The prover encrypts his word V using ElGamal encryption scheme and proves to the verifier that V is
not the plaintext encrypted in Lp. Following the previous technique we can achieve a 3-round proof as
described on Figure 4.7, page 25. The second SPHF is smooth if and only if V = U , this means that

Prover Verifier
V, hrV, gr, r Lp = (hsU, gs), U, s

(hpv , hkv) := (hλgµ, (λ, µ))
V′ = (hpv , h

rV, gr)
−−−−−−−−−−−−−−−→ H′v := hpsv

hpu,Lp←−−−−−−−−−−−−−−− hpu := (hδ(hsU/(hrV))β , gδ(gs/gr)β ,

hpβv g
γ),

hku := (δ, β, γ)

H′u := hpλu,1hp
µ
u,2hp

r
u,3

H′u, Hv−−−−−−−−−−−−−−−→ H′v 6
?= Hv ∧H′u

?= hpδvH
β
v (gr)γ .

Hv := (hsU/V)λ(gs)µ

Figure 4.7: Tweaked ElGamal based SPHF proof of inequality

technically an adversary can break the soundness of the verification of the valid computation of hpv, Hv

when the word V is different from U . However in this case, the protocol should already return yes so
he cannot gain anything from doing so. The proof requires overall 10 group elements: 2 for the initial
commit of U , 2 for the one of V , 2 overall for hpv, Hv and 4 for hpu, H

′
u.

26 Languages and Underlying Hypotheses 4.5

We stress that, this construction differs from the generic approach in the sense that Lp instead of
being known before the protocol like in the generic construction from Figure 4.6, page 25, can be set on
the fly and postpone to the second flow.

Chapter 5

SPHF Friendly Commitment

Contents
5.1 Commitments. 27

5.2 Generic Commitment à la Haralambiev . 28

5.2.1 Building Blocks. 28

5.2.2 Generic Construction. 28

5.3 Revisited FLM Commitment . 29

5.3.1 k-MDDH Cramer-Shoup Encryption . 30

5.3.2 A Universally Composable Commitment with Adaptive Security Based on MDDH 30

5.3.3 Associated Structure-Preserving Smooth Projective Hash Function 31

As we managed to have SPHF tailored for the various worlds of cryptography, we were interested in
having appropriate commitments. While there were several UC compatible commitment [CF01,CLOS02,
DN02,CS03,Lin11,BCPV13], only a few of them [ACP09] were compatible with Smooth Projective Hash
Functions with a very limited efficiency.

We proposed two commitments along those lines, first a generic constructions based on the Haralam-
biev commitment scheme [Har11] idea and a compatible CCA-2 encryption. Then, another one based
on [FLM11] using our SP-SPHF methodology, that proves very compact, at the cost of using pairings.

This fits well with the classical approach that consists in using SPHF for the language of plaintext
associated with an encryption.

5.1 Commitments.

We give here an informal overview to help the unfamiliar reader with the following. A non-interactive
labelled commitment scheme C is defined by three algorithms:
• Setup(1K) takes as input the security parameter K and outputs the global parameters, passed

through the Common Reference String (CRS) to all other algorithms;
• Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ), where C is the

commitment of x for the label `, and δ is the corresponding opening data. This is a probabilistic
algorithm.

• VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and the opening data δ
and outputs 1 (true) if δ is a valid opening data for C, x and `. It always outputs 0 (false) on
x = ⊥.

The basic properties required for commitments are correctness (for all correctly generated CRS ρ,
all commitments and opening data honestly generated pass the verification VerCom test), the hiding
property (the commitment does not leak any information about the committed value) and the binding
property (no adversary can open a commitment in two different ways).

A commitment scheme is said equivocable if it has a second setup SetupComT(1K) that additionally
outputs a trapdoor τ , and two algorithms
• SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk), where C

is a commitment and eqk an equivocation key;
• OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a message x, an equivocation

key eqk, and outputs an opening data δ for C and ` on x.

27

28 SPHF Friendly Commitment 5.2

such as the following properties are satisfied: trapdoor correctness (all simulated commitments can
be opened on any message), setup indistinguishability (one cannot distinguish the CRS ρ generated
by SetupCom from the one generated by SetupComT) and simulation indistinguishability (one cannot
distinguish a real commitment (generated by Com) from a fake commitment (generated by SCom),
even with oracle access to fake commitments), denoting by SCom the algorithm that takes as input

the trapdoor τ , a label ` and a message x and which outputs (C, δ)
$← SCom`(τ, x), computed as

(C, eqk)
$← SimCom`(τ) and δ ← OpenCom`(eqk, C, x).

A commitment scheme C is said extractable if it has a second setup SetupComT(1K) that additionally
outputs a trapdoor τ , and a new algorithm
• ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label `, and outputs

the committed message x, or ⊥ if the commitment is invalid.
such as the following properties are satisfied: trapdoor correctness (all commitments honestly generated

can be correctly extracted: for all `, x, if (C, δ)
$← Com`(x) then ExtCom`(C, τ) = x), setup indistinguis-

hability (as above) and binding extractability (one cannot fool the extractor, i.e. , produce a commitment
and a valid opening data to an input x while the commitment does not extract to x).

5.2 Generic Commitment à la Haralambiev

In his doctoral dissertation, Haralambiev [Har11] proposed a commitment scheme that is both equivocable
and extractable. The key was that the decommitment allowed the user to omit randomness, and so
only remember the randomness corresponding to the value he wants to have committed. We showed
in [ABB+13] how to adapt this commitment, to be compatible with SPHF, at the cost of using some
pairings, we managed to propose a UC-Compatible SPHF-Friendly commitment that was only linear in
the size of the value committed ([ACP09] was quadratic).

While revisiting this commitment in [BC15], we managed to propose a generalization compatible with
the various worlds of cryptography.

We showed that one can build such a commitment, by combining a chameleon hash function (a hash
function, with a trapdoor to generate collision) used to commit to every bit of the message, and a CCA-2
encryption of the randomness used in the chameleon hash. This construction no longer requires pairing,
and we showed that those various tools can be instantiated under different assumption like DQR, DDH,
or LWE.

5.2.1 Building Blocks.

We assume the existence of compatible CCA-encryption (Setup,KeyGen,Encrypt,Decrypt) and chameleon
hash (KeyGen,VKeyGen,CH,Coll,Valid), in the sense that is feasible to compute a CCA-encryption of the
opening value of the chameleon hash. For example, a Pedersen Chameleon Hash is not compatible with
Cramer Shoup encryption, as we would need to encrypt the randomness as a scalar, while the decryption
algorithm only allows us to recover group elements.

In order for our commitment to accept an SPHF, we require the CCA-encryption to accept an SPHF
on the language of valid ciphertexts. The precise language needed will depend on the way the chame-
leon hash is verified, but will be easily constructed by combining several simple languages as described
in [BBC+13a].

We require the chameleon hash to be verifiable by the receiver. For the sake of brevity, we describe
here the case where the chameleon hash is only verifiable by the server. In this case, we need a pre-flow,
in which the server is assumed to execute the algorithm VKeyGen to generate a verification key and
its trapdoor and send the verification key to the sender. This makes the commitment not completely
non-interactive anymore but it should be noted that if the global protocol is not one-round, these values
can be sent by the receiver during the first round of the protocol. In the case where the chameleon hash
is publicly verifiable, one simply has to consider the keys vk and vtk empty, and ignore the pre-flow.

5.2.2 Generic Construction.

We now describe the different algorithms of our chameleon-hashed targeted commitment protocol CHCS
from player P to Q (see Section 5.1 for the notations of the algorithms).
• Setup and simulated setup algorithms: SetupComT(1K) (the algorithm for setup with trap-

doors) generates the various parameters param, for the setting of the SPHF-friendly labelled CCA-
encryption scheme and the chameleon hash scheme. It then generates the corresponding keys and

5.3 Revisited FLM Commitment 29

trapdoors: (ck, tk) for the chameleon hash scheme and (ek, dk) for the encryption scheme.
For SetupCom(1K) (the algorithm for setup without trapdoors), the setting and the keys are ge-
nerated the same way, but forgetting the way the keys were constructed (such as the scalars, in a
DDH-based setting), thus without any trapdoor.
The algorithms both output the CRS ρ = (ek, ck, param). In the first case, τ denotes the trapdoors
(dk, tk).

• Pre-flow (verification key generation algorithm): player Q executes VKeyGen(ck) to generate
the chameleon designated verification key vk and the trapdoor vtk and sends vk to the sender P .

• Targeted commitment algorithm: Com`(M;Q) from player P to player Q, for M = (Mi)i ∈
{0, 1}m and a label `, works as follows:

– For i ∈ J1,mK, it chooses ri,Mi
at random and computes CH(ck, vk,Mi; ri,Mi

) to obtain the
hash value ai and the corresponding opening value di,Mi

. It samples at random the va-
lues ri,1−Mi and di,1−Mi . We denote as a = (a1, . . . , am) the tuple of commitments and
d = (di,j)i,j .

– For i ∈ J1,mK and j = 0, 1, it gets b = (bi,j)i,j = 2mEncrypt`
′

pk(d; s), where s is taken at
random and `′ = (`,a).

The commitment is C = (a,b), and the opening information is the m-tuple δ = (s1,M1
, . . . , sm,Mm

).

• Verification algorithm: VerCom`(vtk, C,M, δ) first checks the validity of the ciphertexts bi,Mi

with randomness si,Mi
, then extracts di,Mi

from bi,Mi
and si,Mi

, and finally checks the chameleon
hash ai with opening value di,Mi , for i ∈ J1,mK, via the algorithm Valid(ck, vk,Mi, ai, di,Mi , vtk).

• Simulated targeted commitment algorithm: SimCom`(τ ;Q) from the simulator to player Q,
takes as input the equivocation trapdoor, namely tk, from τ = (dk, tk), and outputs the commitment
C = (a,b) and equivocation key eqk = s, where

– For i ∈ J1,mK, it chooses ri,0 at random, computes (ai, di,0) = CH(ck, vk, 0; ri,0), and uses
the equivocation trapdoor tk to compute ri,1 used to open the chameleon hash to 1 such that
CH(ck, vk, 1; ri,1) is equal to (ai, di,1). This leads to a and d, making di,j the opening value
for ai,j for all i ∈ J1,mK and j = 0, 1.

– b is built as above: b = (bi,j)i,j = 2mEncrypt`
′

pk(d; s), where eqk = s is taken at random and
`′ = (`,a).

• Equivocation algorithm: OpenCom`(eqk, C,M) simply uses part of the equivocation key eqk
(computed by the SimCom algorithm) to obtain the opening information δ = (s1,M1

, . . . , sm,Mm
)

in order to open to M = (Mi)i.

• Extraction algorithm: ExtCom`(τ, vtk, C) takes as input the extraction trapdoor, namely the
decryption key dk, from τ = (dk, tk), the verification trapdoor vtk and a commitment C = (a,b).
For i ∈ J1,mK and j = 0, 1, it first extracts the value di,j from the ciphertext bi,j , using the
decryption key dk. Then, for i ∈ J1,mK, it checks the chameleon hash ai with opening values di,0
and di,1 with the help of the algorithm Valid(ck, vk, j, ai, di,j , vtk) for j = 0, 1. If only one opening
value di,j satisfies the verification equality of the chameleon hash, then j = Mi. If this condition
holds for each i ∈ J1,mK, then the extraction algorithm outputs (Mi)i. Otherwise (either if b
could not be correctly decrypted, or there was an ambiguity while checking a, with at least one
chameleon hash ai with two possible opening values di,0 and di,1), it outputs ⊥.

Remark Given a publicly verifiable collision-resistant chameleon hash and a secure CCA-encryption
accepting an SPHF on the language of valid ciphertexts, the above construction provides a commitment
scheme which is SPHF-friendly for the languages:

LM =

{
(`, C)|∀i ∈ J1,mK,∃ri,Mi

, si,Mi
, di,Mi

such that
mEncrypt∗,`(pk, (di,Mi)i; (si,Mi)i) = (bi,Mi)i
∧ CH(ck, vk,Mi; ri,Mi

) = (ai, di,Mi
).

}
5.3 Revisited FLM Commitment

It should be noted that the commitment used in [ACP09, ABB+13, BC15] has the major drawback of
leaking the bit-length of the committed message (an upper-bound of it). While in application to Oblivious
Transfer this is not a major problem, for PAKE this is a way more sensitive issue. The commitment
proposed in [FLM11] is conceptually simpler, since the equivocation only needs to modify the witness,
allowing the user to compute honestly its message in the commitment phase which lead to a more natural
protocol execution.

30 SPHF Friendly Commitment 5.3

5.3.1 k-MDDH Cramer-Shoup Encryption

[FLM11] heavily relies around Cramer Shoup encryption, so a first important step, is to supersede their
DLin Cramer Shoup by a k-MDDH one. This was already done by [EHK+13], but we recall it here for
sake of completeness.
• Setup(1K) generates a group G of order p, with an underlying matrix assumption using a base

matrix [A] ∈ Gk+1×k;

• KeyGen(param) generates dk = t1, t2, z
$← Zk+1

p , and sets, c = t1A ∈ Zkp,d = t2A ∈ Zkp,h = zA ∈
Zkp. It also chooses a hash function HK in a collision-resistant hash family H (or simply a Universal
One-Way Hash Function).
The encryption key is ek = ([c], [d], [h], [A],HK).

• Encrypt(`, ek, [m]; r), for a message M = [m] ∈ G and random scalars r
$← Zkp, the ciphertext

is C = (u = [Ar]), e = [hr + m], v = [(c + d � ξ)r]1, where v is computed afterwards with
ξ = HK(`,u, e).

• Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether v is consistent with t1, t2.
If it is, one computes M = [e− (uz)] and outputs M . Otherwise, one outputs ⊥.

Theorem 5.3.1 The k-MDDH Cramer-Shoup Encryption is IND-CCA 2 under k-MDDH assumption
and the collision resistance (universal one-wayness) of the Hash Family.

Structure-Preserving Smooth Projective Hash Function For ease of readability we set B =h
A
c

 and D =


0

...
d


, and write C ′ = [Br + ξDr]1 the ciphertext without the message M .

• HashKG(L , param), chooses Λ
$← Z(k+2)×1

p , λ
$← Zp and sets hk1 = Λ, hk2 =

 λ
0

Λk+2

 ;

• ProjKG(hk, (L , param),W), outputs hp1 = hk>1 B, hp2 = hk>2

h0
d

;

• Hash(hk, (L , param),W), outputs a hash value H = [(hk1 + ξhk2)>C ′]T ;
• ProjHash(hp, (L , param),W,w), outputs the value H ′ = [(hp1 + ξhp2)r]T .
The Smoothness comes inherently from the fact that we have 2k + 2 unknowns in hk while hp gives

at most 2k equations. Hence an adversary has a negligible chance to find the real values.

5.3.2 A Universally Composable Commitment with Adaptive Security Based
on MDDH

We first show how to simply generalize FLM’s commitment [FLM11] from DLin to k-MDDH.
At Asiacrypt 2011, Fischlin, Libert and Manulis presented a universally composable commitment [FLM11]

with adaptive security based on the Decision Linear assumption [BBS04]. We show here how to gene-
ralize their scheme to the Matrix Decisional Diffie-Hellman assumption from [EHK+13]. Note that sid
denotes the session identifier and cid the commitment identifier and that the combination (sid, cid) is
globally unique, as in [HMQ04,FLM11].

Compared to the original version of the commitment, we split the proof πval−enc into its two parts:
the NIZK proof denoted here as [Π]1 is still revealed during the opening algorithm, while the Groth-Sahai
commitment [R]2 of the randomness r of the Cramer-Shoup encryption is sent during the commitment
phase. Furthermore, since the hash value in the Cramer Shoup encryption is used to link the commitment
with the session, we include this value [R]2 to the label, in order to ensure that this extra commitment
information given with the ciphertext is the original one. We refer the reader to the original security proof
in [FLM11, Theorem 1], which remains exactly the same, since this additional commitment provides no
information (either computationally or perfectly, depending on the CRS), and since the commitment [R]2
is not modified in the equivocation step (only the value [Π]1 is changed).
• CRS Generation: algorithm SetupCom(1K) chooses a bilinear asymmetric group (p,G1,G2,GT , e, g1, g2)

of order p > 2K, and a set of generators [A]1 corresponding to the underlying matrix assumption.
As explained in [EHK+13], following their notations, one can define a Groth-Sahai CRS by picking

w
$← Zk+1

p , and setting [U]2 = [B||Bw]2 for a hiding CRS, and [B||Bw + (0||z)>]2 otherwise,
where [B]2 is an k-MDDH basis, and w, z are the elements defining the challenge vector.

5.3 Revisited FLM Commitment 31

For the Cramer-Shoup like CCA-2 encryption, one additionally picks t1, t2, z
$← Zk+1

p , and a
Universal One-Way Hash Function H and sets [h]1 = [z ·A]1, [c]1 = [t1A]1, [d]1 = [t2A]1.
The CRS consists of crs = (K, p,G1,G2,GT , [A]1 ∈ Gk×k+1

1 , [U]2, [h]1 ∈ Gk1 , [c]1 ∈ Gk1 , [d]1 ∈
Gk1 ,H).

• Commitment algorithm: Com(crs,M, sid, cid, Pi, Pj), to commit to messageM ∈ G1 for party Pj ,
party Pi conducts the following steps:

– It chooses random exponents r in Zkp and commits to r in [R]2 with randomness ρ
$← Zk×k+1

p ,

setting [R]2 = [Uρ+ ι2(r)]2 ∈ Gk×k+1
2 . It also computes a Cramer-Shoup encryption ψCS =

[C]1 of M ∈ G1 under the label ` = Pi‖sid‖cid and the public key pk:

[C]1 = [Ar||hr +M ||(c + d�H(`||C1||C2||R))r]1 = [C1||C2||C3]1

For simplicity we write `′ = `||[C1]1||[C2]1||[R]2.
– It generates a NIZK proof DM = [Π]1 that ψCS is indeed a valid encryption of M ∈ G1

for the committed r in [R]2. This requires to prove that these exponents satisfy the multi-
exponentiation equations:

[C1]1 = [Ar]1, [C2 −M]1 = [hr]1, [C3 = (c + d�H(`′))r]1

The associated proof is then [Π]1 = [ρ>(A||h||c + d�H(`′))]1.
– Pi erases r after the generation of [R]2 and [Π]1 but retains DM = [Π]1.

The commitment is ([C]1, [R]2).
• Verification algorithm: the algorithm VerCom(crs,M,DM , sid, cid, Pi, Pj) checks the consistency

of the proof πval−enc with respect to [C]1 and [R]2. and ignores the opening if the verification fails.
• Opening algorithm: OpenCom(crs,M,DM , sid, cid, Pi, Pj) reveals M and DM = [Π]1 to Pj .
One can easily see that [C3]1 is the projective hash computation of a 2-universal hash proof on the

language “[C1]1 in the span of A”, with [C2]1 being an additional term that uses the same witness
to mask the committed message, so that [C]1 is a proper generalization of the Cramer-Shoup CCA-2
encryption. Details on the k-MDDH Groth-Sahai proofs are given in [BC16] but the generalization is
natural.

It is thus easy to see that this commitment is indeed a generalization of the FLM non-interactive UC
commitment with adaptive corruption under reliable erasures.

5.3.3 Associated Structure-Preserving Smooth Projective Hash Function

We now want to supersede the verification equation of the commitment by a smooth projective hash
function providing implicit decommitment, simply using the proof as a witness. We consider the language
of the valid encryptions of M using a random r which is committed into [R]2:

LM = {[C]1 | ∃r∃ρ such that [R]2 = [Uρ+ ι2(r)]2
and [C]1 = [Ar||hr +M ||(c + d�H(`||C1||C2||R))r]1}

The verifier picks a random hk = α
$← Zk+3×k+1

p and sets hp = [α�U]2.
On one side, the verifier then computes:

Hash(hk, ([C]1, [R]2)) = [α� ((C1||C2 −M ||C3)− (A||h||c + d�H(`′)) ·R)]T

While the prover computes ProjHash(hp,Π) = [Π · hp]T .
• Correctness: comes directly from the previous equations.
• Smoothness: on a binding CRS, [U]2’s last column is in the span of the k first (which are simply

[B]2), hence as hk ∈ Zk+1
p , the k equations given in hp are not enough to determine its value and

so it is still perfectly hidden from an information theoretic point of view.

Efficiency. The rough size of a projection key is k × (k + 3) (number of elements in each proof times
number of proofs). It should be noted that if we do not need a KV-SPHF (in the case of oblivious transfer
for example), instead of repeating the projection key k + 3 times (in order to verify each component of

the Cramer-Shoup), one can generate a value ε
$← Zp, an hp for a single equation, and say that for the

other component, one simply uses hpε
i

.
?

Part II

Using HPS in Constructions

32

Chapter 6

Symmetric Constructions (LAKE)

Contents
6.1 Language Authenticated Key Exchange . 33

6.1.1 The Ideal Functionality . 34

6.1.2 Generic Construction . 35

6.2 Password-Authenticated Key Exchange . 36

6.2.1 Ideal Functionality . 36

6.2.2 High Level Construction . 37

6.3 Verifier-based PAKE . 38

6.4 DPAKE . 38

6.4.1 Constructions . 39

6.4.2 Simple Protocol . 40

6.4.3 Login procedure . 41

6.4.4 Efficient Version . 41

6.5 Secret Handshake . 42

Beyond the original Chosen-Ciphertext secure encryption scheme of Cramer and Shoup [CS98],
Smooth Projective Hash Functions have given rise to generalized classes of Authenticated Key Ex-
change (Password-based, Language-based, . . .) [GL06, ACP09, KV11, BBC+13a]. They also have been
used in Oblivious Transfer [Kal05, HK12] One-Time Relatively-Sound Non-Interactive Zero-Knowledge
Arguments [JR12], and Zero-Knowledge Arguments [BBC+13b].

In this chapter, we are going to focus on symmetric constructions where we expect some form of
mutual authentication.

6.1 Language Authenticated Key Exchange

In [BBC+13a], we introduced a new notion, under the name of Language Authenticated Key Exchange
which was supposed to encompass every possible authenticated two-party key exchange. We assume the
existence of languages Li,Lj and wanted a protocol that leads to a shared key between users Ui and Uj
if and if Ui possesses a word Wi ∈ Li and Uj possesses a word Wj ∈ Lj .

This notion naturally encompasses the concept of Password-Authenticated Key Exchange [BM92]
(where Li = Lj = {pw}), Secret Handshakes [BDS+03] (where Li = Lj = {(m,σ)|Valid(vk, σ,m)})
or even the notion of Credential Authenticated Key Exchange [CCGS10] where Credentials have to be
compatible.

In order to define the security of this primitive, we use the UC framework and an appropriate definition
for languages that permits to dissociate the public part of the policy, the private common information
the users want to check and the (possibly independent) secret values each user owns that assess the
membership to the languages. We provide an ideal functionality for LAKE and give efficient realizations
of the new primitive (for a large family of languages) secure under classical mild assumptions, in the
standard model (with a common reference string – CRS), with static corruptions.

33

34 Symmetric Constructions (LAKE) 6.1

Language definition.

In [ACP09], Abdalla et al. already formalized languages to be considered for SPHF. But, in the following,
we will use a more simple formalism, which is nevertheless more general: we consider any efficiently
computable binary relation R : {0, 1}∗ ×P ×S → {0, 1}, where the additional parameters pub ∈ {0, 1}∗
and priv ∈ P define a language LR(pub, priv) ⊆ S of the words W such that R(pub, priv,W) = 1:
• pub are public parameters;
• priv are private parameters the two players have in mind, and they should think to the same values:

they will be committed to, but never revealed;
• W is the word the sender claims to know in the language: it will be committed to, but never

revealed.
Our LAKE primitive, specific to two relations Ra and Rb, will allow two users, Alice and Bob, owning a
word Wa ∈ LRa

(pub, priva) and Wb ∈ LRb
(pub, privb) respectively, to agree on a session key under some

specific conditions: they first both agree on the public parameter pub, but Bob will think about priv′a
for his expected value of priva, Alice will do the same with priv′b for privb; eventually, if priv′a = priva and
priv′b = privb, and if they both know words in the languages, then the key agreement will succeed. In
case of failure, no information should leak about the reason of failure, except the inputs did not satisfy
the relations Ra or Rb, or the languages were not consistent.

We stress that each LAKE protocol will be specific to a pair of relations (Ra,Rb) describing the way
Alice and Bob will authenticate to each other. This pair of relations (Ra,Rb) specifies the sets Pa, Pb
and Sa, Sb (to which the private parameters and the words should respectively belong). Therefore, the
formats of priva, privb and Wa and Wb are known in advance, but not their values. When Ra and Rb
are clearly defined from the context (e.g., PAKE), we omit them in the notations. For example, these
relations can formalize:
• Password-based authentication: The language is defined by R(pub, priv,W) = 1⇔ W = priv, and

thus pub = ∅. The classical setting of PAKE requires the players A and B to use the same password
W , and thus we should have priva = priv′b = privb = priv′a = Wa = Wb;

• Signature-based authentication: R(pub, priv,W) = 1 ⇔ Verif(pub1, pub2,W) = 1, where pub =
(pub1 = vk, pub2 = M) and priv = ∅. The word W is thus a signature of M valid under vk, both
specified in pub;

• Credential-based authentication: we can consider any mix for vk and M in pub or priv, and even
in W , for which the relation R verifies the validity of the signature. When M and vk are in priv or
W , we achieve affiliation-hiding property.

In the two last cases, the parameter pub can thus consist of a message on which the user is expected to
know a signature valid under vk: either the user knows the signing key and can generate the signature
on the fly to run the protocol, or the user has been given signatures on some messages (credentials). As
a consequence, we just assume that, after having publicly agreed on a common pub, the two players have
valid words in the appropriate languages. The way they have obtained these words does not matter.

6.1.1 The Ideal Functionality

We generalize the Password-Authenticated Key Exchange functionality Fpake (first provided in [CHK+05])
to more complex languages: the players agree on a common secret key if and only if they own words that
lie in the languages the partners have in mind. As before in this paper, the languages are formalized by
an efficiently computable binary relation R : {0, 1}∗ × P × S → {0, 1} which defines the words W ∈ S
that are in the language LR(pub, priv), according to the public part pub ∈ {0, 1}∗ and the private part
priv ∈ P. More precisely, after an agreement on pub between Pi and Pj (modeled here by the use of
the split functionality, see below), player Pi uses a word Wi belonging to Li = LRi(pub, privi) and it
expects its partner Pj to use a word Wj belonging to the language L ′j = LRj (pub, priv′j). We assume
relations Ri and Rj to be specified by the kind of protocol we study (PAKE, Verifier-based PAKE, secret
handshakes, . . .) and so the languages are defined by the additional parameters pub, privi and privj only:
they both agree on the public part pub, to be possibly parsed in a different way by each player for each
language according to the relations, player Pi owns Wi ∈ Li = L (pub, privi) ⊆ Si, for privi ∈ Pi, and
expects player Pj to use the language L′j = L (pub, priv′j) ⊆ Sj , for priv′j ∈ Pj . Symmetrically, player Pj
owns Wj ∈ Lj = L (pub, privj) ⊆ Sj and expects player Pi to use the language L′i = L (pub, priv′i) ⊆ Si.
The subsets Si,Sj and Pi,Pj are assumed public and determined by Ri and Rj , and thus by the kind
of protocol, and known in advance.

Note however that the respective languages do not need to be the same or to use similar relations:
authentication means could be totally different for the 2 players. The key exchange should succeed if and

6.2 Language Authenticated Key Exchange 35

The functionality Flake is parametrized by a security parameter k and a public parameter pub for
the languages. It interacts with an adversary S and a set of parties P1,. . . ,Pn via the following
queries:• New Session: Upon receiving a query (NewSession : sid, Pi, Pj ,Wi,Li =

L (pub, privi),L
′
j = L (pub, priv′j)) from Pi,

– If this is the first NewSession-query with identifier sid, record the tuple
(Pi, Pj ,Wi,Li,L ′j , initiator). Send (NewSession; sid, Pi, Pj , pub, initiator) to S and Pj .

– If this is the second NewSession-query with identifier sid
and there is a record (Pj , Pi,Wj ,Lj ,L ′i , initiator), record the
tuple (Pj , Pi,Wj ,Lj ,L ′i , initiator,Wi,Li,L ′j , receiver). Send
(NewSession; sid, Pi, Pj , pub, receiver) to S and Pj .

• Key Computation: Upon receiving a query (NewKey : sid) from S, if there is a record of the
form (Pi, Pj ,Wi,Li,L ′j , initiator,Wj ,Lj ,L ′i , receiver) and this is the first NewKey-query
for session sid, then

– If (L ′i = Li and Wi ∈ Li) and (L ′j = Lj and Wj ∈ Lj), then pick a random key
sk of length k and store (sid, sk). If one player is corrupted, send (sid, success) to the
adversary.

– Else, store (sid,⊥), and send (sid, fail) to the adversary if one player is corrupted.
• Key Delivery: Upon receiving a query (SendKey : sid, Pi, sk) from S, then

– if there is a record of the form (sid, sk′), then, if both players are uncorrupted, out-
put (sid, sk′) to Pi. Otherwise, output (sid, sk) to Pi.

– if there is a record of the form (sid,⊥), then pick a random key sk′ of length k and
output (sid, sk′) to Pi.

Figure 6.1: Ideal Functionality Flake

only if the two following pairs of equations hold: (L ′i = Li and Wi ∈ Li) and (L ′j = Lj and Wj ∈ Lj).

Description.

In the initial Fpake functionality [CHK+05], the adversary was given access to a TestPwd-query, which
modeled the on-line dictionary attack. But it is known since [BCL+05] that it is equivalent to use the
split functionality model [BCL+05], generate the NewSession-queries corresponding to the corrupted
players and tell the adversary (on behalf of the corrupted player) whether the protocol should succeed
or not. Both methods enable the adversary to try a credential for a player (on-line dictionary attack).
The second method (that we use here) implies allowing S to ask NewSession-queries on behalf of the
corrupted player, and letting it to be aware of the success or failure of the protocol in this case: the
adversary learns this information only when it plays on behalf of a player (corruption or impersonation
attempt). This is any way an information it would learn at the end of the protocol. We insist that third
parties will not learn whether the protocol succeeded or not, as required for secret handshakes. To this
aim, the NewKey-query informs in this case the adversary whether the credentials are consistent with
the languages or not. In addition, the split functionality model guarantees from the beginning which
player is honest and which one is controlled by the adversary. This finally allows us to get rid of the
TestPwd-query. The Flake functionality is presented in Figure 6.1, page 35.

6.1.2 Generic Construction

Using smooth projective hash functions on commitments, one can generically define a LAKE protocol
as done in [ACP09]. The basic idea is to make the player commit to their private information (for the
expected languages and the owned words), and eventually the smooth projective hash functions will
be used to make implicit validity checks of the global relation as described in Figure 6.2, page 36. For
simplicity, we assume every language can be checked using a KV-SPHF, [BBC+13a] gives a more detailed
version otherwise, but it requires additional rounds.

In the rest of this chapter, we are going to detail more specific instantiations of this framework
to achieve various protocols. Interestingly, everytime we managed to obtain either the most efficient
protocol to date, or at least close at the given level of security.

36 Symmetric Constructions (LAKE) 6.2

Execution between Pi and Pj , with session identifier sid.
We denote by `i = (sid, ssid, Pi, Pj , pub,VKi,VKj) and by `j = (sid, ssid, Pi, Pj , pub,VKj ,VKi), where
pub is the combination of the contributions of the two players. The initiator now uses a word Wi in
the language L (pub, privi), and the receiver uses a word Wj in the language L (pub, privj) (*). We
assume commitments and associated smooth projective hash functions exist for these languages.

Exchange Each user Pi (with random tape ωi) generates a commitment on (privi, priv
′
j ,Wi) in

Ci, where Wi has been randomized in the language, under the label `i. It also generated hpj , hkj
for the language Lj . And then sends Ci, hpj to Pj ;

Hashing Each Pi, computes Ki = Hi ⊕H ′j as follows:

Hi = Hash(hkj , {(priv′j , privi)} ×L (pub, priv′j), `j ,Comj)

H ′j = ProjHash(hpi, {(privi, priv′j)} ×L (pub, privi), `i,Comi, ωi)

(*) As explained in Section 6.1, page 34, recall that the languages considered depend on two possibly different
relations, namely Li = LRi

(pub, privi) and Lj = LRj
(pub, privj), but we omit them for the sake of clarity. We

assume they are both self-randomizable.

Figure 6.2: Language-based Authenticated Key Exchange from a Smooth Projective Hash Function on
Commitments

6.2 Password-Authenticated Key Exchange

Password-Authenticated Key Exchange (PAKE) protocols were proposed in 1992 by Bellovin and Mer-
ritt [BM92] where authentication is done using a simple password, possibly drawn from a small en-
tropy space subject to exhaustive search. Since then, many schemes have been proposed and studied.
SPHF have been extensively used, starting with the work of Gennaro and Lindell [GL03] which gene-
ralized an earlier construction by Katz, Ostrovsky, and Yung [KOY01], and followed by several other
works [CHK+05,ACP09]. More recently, a variant proposed by Katz and Vaikuntanathan even allowed
the construction of one-round PAKE schemes [KV11,BBC+13b]. 1

The first ideal functionality for PAKE protocols in the UC framework [Can01,CK02] was proposed by
Canetti et al. [CHK+05], who showed how a simple variant of the Gennaro-Lindell methodology [GL03]
could lead to a secure protocol. Though quite efficient, their protocol was not known to be secure against
adaptive adversaries, that are capable of corrupting players at any time, and learn their internal states.
The first ones to propose an adaptively secure PAKE in the UC framework were Barak et al. [BCL+05]
using general techniques from multi-party computation. Though conceptually simple, their solution
results in quite inefficient schemes.

Recent adaptively secure PAKE were proposed by Abdalla et al. [ACP09, ABB+13], following the
Gennaro-Lindell methodology with variation of the Canetti-Fischlin commitment [CF01]. However their
communication size is growing in the size of the passwords, which is leaking information about an upper-
bound on the password used in each exchange.

6.2.1 Ideal Functionality

We present the PAKE ideal functionality FpwKE on Figure 6.3, page 37. It was described in [CHK+05].
The main idea behind this functionality is as follows: If neither party is corrupted and the adversary

does not attempt any password guess, then the two players both end up with either the same uniformly-
distributed session key if the passwords are the same, otherwise they have uniformly-distributed inde-
pendent session keys. In addition, the adversary does not learn whether the interaction was successful.
However, if one party is corrupted, or if the adversary successfully guessed the player’s password (the
session is then marked as compromised), the adversary is granted the right to fully determine its session
key. There is in fact nothing lost by allowing it to determine the key. In case of a wrong guess (the
session is then marked as interrupted), the two players are given independently-chosen random keys. A
session that is nor compromised nor interrupted is called fresh, which is its initial status.

Finally notice that the functionality is not in charge of providing the passwords to the participants.
The passwords are chosen by the environment which then hands them to the parties as inputs. This

1The most efficient PAKE scheme so far (using completely different techniques) is the recent Asiacrypt paper [JR15],
which relies on QA-NIZK.

6.2 Password-Authenticated Key Exchange 37

The functionality FpwKE is parameterized by a security parameter K. It interacts with an adversary S
and a set of parties P1,. . . ,Pn via the following queries:
• Upon receiving a query (NewSession, sid, ssid, Pi, Pj, pw) from party Pi:

Send (NewSession, sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or if this is the second
NewSession query and there is a record (sid, ssid, Pj , Pi, pw

′), then record (sid, ssid, Pi, Pj , pw) and
mark this record fresh.

• Upon receiving a query (TestPwd, sid, ssid, Pi, pw′) from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and
reply with “wrong guess”.

• Upon receiving a query (NewKey, sid, ssid, Pi, sk) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj , pw), and this is the first NewKey query for Pi, then:

– If this record is compromised, or either Pi or Pj is corrupted, then output (sid, ssid, sk) to
player Pi.

– If this record is fresh, and there is a record (Pj , Pi, pw
′) with pw′ = pw, and a key sk′ was sent

to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, ssid, sk′) to Pi.
– In any other case, pick a new random key sk′ of length K and send (sid, ssid, sk′) to Pi.

Either way, mark the record (sid, ssid, Pi, Pj , pw) as completed.

Figure 6.3: Ideal Functionality for PAKE FpwKE

guarantees security even in the case where two honest players execute the protocol with two different
passwords: This models, for instance, the case where a user mistypes its password. It also implies
that the security is preserved for all password distributions (not necessarily the uniform one) and in all
situations where the password, are related passwords, are used in different protocols. Also note that
allowing the environment to choose the passwords guarantees forward secrecy.

In case of corruption, the adversary learns the password of the corrupted player, after the NewKey-
query, it additionally learns the session key.

6.2.2 High Level Construction

Our goal is to build symmetric one-round PAKE. In other words, we want to make PAKE protocols,
where both user behave in the same way, and just need to them one flow without respecting a particular
order.

Throughout different papers [BBC+13b, ABB+13, BC16], we proposed protocols following a basic
idea. Assuming a common reference string containing the public key of a commitment, each user will
then commit to his password pw in C, keep the associated witness w , and provide the projection key hp
for a KV-SPHF for the language of a valid commitment of said password. This is detailed in Figure 6.4,
page 37.

CRS: crs
$← SetupCom(1K).

Protocol execution by Pi with pwi:

1. Pi generates hki
$← HashKG(Lpwi

), hpi ← ProjKG(hki,Lpwi
)

2. Pi computes (Ci,wi) = Com`i(crs, pwi, sid, cid, Pi, Pj) with `i = (sid, Pi, Pj , hpi)

3. Pi sends hpi,Ci to Pj , stores hki,wi, completely erases everything else.

Key computation: Upon receiving hpj ,Cj from Pj

1. Pi computes H ′i ← ProjHash(hpj , (Lpwi
, `i,Ci))

and Hj ← Hash(hki, (Lpwi
, `j ,Cj)) with `j = (sid, Pj , Pi, hpj)

2. Pi computes ski = H ′i ⊕Hj and erases everything else, except pwi.

Figure 6.4: One-Round PAKE from a Commitment with its KV-SPHF

We proposed to instantiate such framework with various primitives to achieve different level of security

38 Symmetric Constructions (LAKE) 6.4

/ efficiency.
We started [BBC+13b] by using a simple Cramer Shoup Encryption as commitment. This leads to

a very efficient PAKE (each user sending 6 group elements), secure in the BPR model [BPR00] which is
not totally UC because it cannot handle corruption.

We then proceeded [ABB+13], to supersede Cramer Shoup with a commitment à la Haralambiev, we
showed that this commitment was both extractable, equivocable, and compatible with SPHF. This lead
to a One-Round UC-PAKE with adaptive corruptions, however we needed to do a bit per bit commitment
of the password, it then provided both an upper bound of the password length to the adversary, and was
still inefficient as linear in the password length.

Finally, we managed [BC16] through the introduction of Structure-Preserving SPHF, to supersede
this commitment with the UC-Commitment from [FLM11] to obtain a constant-size UC-PAKE. Sadly,
simultaneously [JR15] proposed another approach and obtained a slightly more efficient scheme.

Table 6.1: Comparison with existing UC-secure PAKE schemes where |password| = m

Adaptive One-round Communication complexity Assumption

[ACP09] 3 7 2× (2m+ 22mK)×G + OTS DDH
[KV11] 7 3 ≈ 2× 70×G DLIN
[BBC+13b] 7 3 2× 6×G1 + 2× 5×G2 SXDH
[ABB+13] 3 3 2× 10m×G1 + 2×m×G2 SXDH
[JR15] 3 3 6×G1 + 2×G2 SXDH
[BC16] 3 3 2× 4×G1 + 2× 5×G2 SXDH

6.3 Verifier-based PAKE

The problem with PAKE protocols is that in case of corruptions, the adversary has a direct access to
the password in plaintext. Often a PAKE is going to be between a user, and a server, in this context
the server is more prone to attacks as it will normally store several passwords. To avoid problems in
case of server compromise, the concept of verifier-based PAKE was introduced, the client still owns the
password pw, however the server now only knows a one-way function of the password f(pw) (for example
gpw or H(pw)). This way in case of a leak, an adversary does not have directly access to the passwords.

The idea is to process in two (simultaneous) steps:
• On one hand, they do a PAKE for the password f(pw). This is enough to tell the user that the

server in front of him knows the required function of the password, however in case of a leak of the
database, an adversary would be able to impersonate the user when authenticating

• On the other hand, the user also needs to prove he knows the password (pre-image of f(pw)).
In case of a password stored as gpw, the server can pick a discrete logarithm defining a generator
h = gα, and then asking the user to send hpw and (via an SPHF for example) show that h, g, hpw, gpw

is a DDH tuple.

6.4 DPAKE

Another technique to protect against server compromise is simply to share the passwords between several
servers. This alleviate the risk that in case of a database breach, adversary then further run an offline
attack to find a preimage.

We considered in [BCV16], an alternative approach inspired by the multi-party computation paradigm
(and first suggested by Ford and Kaliski [FK00]). The password database on the server side is somehow
shared among two servers (or more, but we focus here on two for sake of simplicity), and authentication
requires a distributed computation involving the client – who still does not need an additional cryp-
tographic device capable of storing high-entropy secret keys – and the two servers who will use some
additional shared secret information. The interaction is performed using a gateway that does not know
any secret information and ends up in the gateway and the client sharing a common key. The lifetime of
the protocol is divided into distinct periods (for simplicity, one may think of these time periods as being
of equal length; e.g. one day) and at the beginning of each period, the two servers interact and update
their sharing of the password database. Similarly to proactive schemes in multi-party computation, we
allow the adversary multiple corruptions of each server, limiting only the corruptions to one server for
each period. The user does not need to update his password nor to perform any kind of computations

6.4 DPAKE 39

and its interaction with the two servers (performed using the gateway) remains the same for the lifetime
of the protocol. In this scenario, even if a server compromise is doable, the secret exposure is not valuable
to the adversary since it reveals only a share of the password database and does not permit to run an
offline dictionary attack.

Ford and Kaliski [FK00] were the first to propose to distribute the capability to test passwords over
multiple servers. Building on this approach, several such protocols were subsequently proposed in various
settings (e.g. [Jab01, MSJ02, BJKS03, DG03, DG06, SK05, KMTG05, KMTG12, ACFP05, KM14]), some
of these solutions (like [BJKS03]) are even commercially available. Recently, Camenisch, Enderlein and
Neven [CEN15] revisited this approach and proposed a scheme in the universal composability frame-
work [Can01] (which has obvious advantages for password-based protocols since users often use related
passwords for many providers). Camenisch et al. gave interesting details about the steps that need to be
taken when a compromise actually occurs. Unfortunately, due to the inherent difficulties of construction
of the simulator in the universal composability framework, their scheme requires users and servers have
to perform a few hundred exponentiations each, which is far from being practical¡

6.4.1 Constructions

Our first construction uses a similar approach to the aforementioned schemes from [Jab01, MSJ02,
BJKS03, DG06, SK05, KMTG12, ACFP05, KM14]: the user generates information theoretic shares of
his password and sends them to the servers. In the authentication phase, the parties run a dedicated
protocol to verify that the provided password equals the priorly shared one. Our solution then consists
in some sort of three-party PAKE, in which (1) the user implicitly checks (using a smooth projective
hash function) that its password is indeed the sum of the shares owned by the two servers, and (2) each
server implicitly checks that its share is the difference of the password owned by the user and the share
owned by the other server. Contrary to the popular approach initiated in [KOY01, GL03] for PAKE,
we cannot use two smooth projective hash functions (one for the client and one for the server) so we
propose a technique in order to combine in a secure way six smooth projective hash functions. This
new method (which may be of independent interest) allows us to prove the security of this construction
under classical cryptographic assumptions (namely the DDH assumption) in the standard security model
from [KMTG12] (without any idealized assumptions).

The main weakness of this first solution is that at each time period, the servers have to refresh the
information-theoretic sharing of the password of all users. This can be handled easily using well-known
techniques from proactive multi-party computation but if the number of users is large, this can be really
time-consuming (in particular if the time period is very short). Our second construction (which is the
main contribution of the paper) is built on the ideas from the first one but passwords are now encrypted
using a public-key encryption scheme where the corresponding secret key is shared among the servers.
At the beginning of each time period, the servers only need to refresh the sharing of this secret key
but the password database is not modified (and can actually be public). Password verification and the
authenticated key exchange is then carried out without ever decrypting the database. A secure protocol
is run to verify that the password sent by the user matches the encrypted password. It is similar to the
protocol we design for the first construction except that the user encrypts its password and the parties
implicitly check (using in this case five smooth projective hash functions) that the message encrypted in
this ciphertext is the same as the message encrypted in the database (using the secret key shared upon
the servers). Both constructions consist in only two flows (one from the client and one from the servers)
and a (private) flow from the servers to the gateway.

Distributed PAKE.

In a distributed PAKE system, we consider as usual a client (owning a password) willing to interact with
a gateway, such as a website. The difference compared to a non-distributed system is that the gateway
itself and interacts with two servers, and none of the three owns enough information to be able to recover
the passwords of the clients on its own2. Such a scheme is correct if the interaction between a client
with a correct password and the gateway succeeds. An honest execution of a distributed PAKE protocol
should result in the client holding a session key KU and the gateway holding a session key KG = KU.

We propose in this paper two settings that describe well this situation. In a first setting, we consider
that the passwords of the clients are shared information-theoretically between the servers, such as π =

2Note that the gateway can be merged with one server, or for a web interface it will often be one of several mirrors with
no secret.

40 Symmetric Constructions (LAKE) 6.4

π1 + π2 (if the password π belongs to an appropriate group) or with the help of any secret sharing
protocol. At the beginning of each time period, the shares are updated, in a probabilistic way, using a
public function Refresh, depending on the sharing protocol used.

In a second setting, we consider that the gateway owns a database of encrypted passwords (which
can be considered public), and the servers each own a share of the corresponding private keys (obtained
by a secret sharing protocol). Again, at the beginning of each time period, the shares are updated, in a
probabilistic way, using a public function Refresh, depending on the sharing protocol used.

If we stay outside the universal composability framework, the Refresh procedure can be handled
easily using classical techniques from computational proactive secret sharing (see [OY91, HJKY95] for
instance).

In this case, we consider the classical model [BPR00] for authenticated key-exchange, adapted to the
two-server setting by [ACFP05,KMTG12]. In the latter model, the authors assume that every client in
the system shares its password with exactly two servers. We loosen this requirement here, depending on
the setting considered.

6.4.2 Simple Protocol

In this first setting, we consider a client U owning a password π and willing to interact with a gateway G.
The gateway interacts with two servers S1 (owning π1) and S2 (owning π2), such that π = π1 + π2. It
should be noted that only the client’s password is assumed to be small and human-memorable. The two
“passwords” owned by the servers can be arbitrarily big. The aim of the protocol is to establish a shared
session key between the client and the gateway.

A simple solution to this problem consists in considering some sort of three-party PAKE, in which
the client implicitly checks (using an SPHF) whether its password is the sum of the shares owned by the
two servers, and the servers implicitly check (also using an SPHF) whether their share is the difference
of the password owned by the client and the share owned by the other server. For sake of simplicity, we
denote the client U as S0 and its password π as π0.

Main Idea of the Construction. In our setting, we denote by pwb a group element, this can either
be gπb or more cleanly G(πb) where G is a reversible group embedding function. The main idea of the
protocol is depicted on Figure 6.5, page 40. For sake of readability, the participants which have a real
role in the computations are directly linked by arrows in the picture, but one should keep in mind that
all the participants (U, S1 and S2) only communicate with G, which then broadcasts all the messages.

In a classical SPHF-based two-party key-exchange between U and G, the client and the gateway
simply checks whether they sent valid Cramer Shoup encryption of the same password.

Here, since U owns pw0 = pw1 · pw2, it gets a little trickier. Also we assume that U does not know
the precise decomposition pw1, pw2, which means that we can not simply run two two-party PAKE one
between U and S1 and one between U and S2. In fact, everything is symmetrical in the scheme, and one
can interchange U with any server without altering their role in the scheme. So, taking that into account,
we need to run 6 SPHF in total to globally ensure the correctness and smoothness of the scheme. Where,
considering the SPHFs for the pair (Si,Sj) implies that if and only if everything was computed honestly,
then one gets the equalities Hi,j(pwi/pwj)

λi = H ′i,j and Hj,i(pwj/pwi)
λj = H ′j,i.

U

C0 = CSek(pw0; r0)

G

S1

C1 = CSek(pw1; r1)

S2

C2 = CSek(pw2; r2)

hp1,2

(r2 for C2
known?)

hp2,1

(r1 for C1
known?)

hp1,0 (r0 for C0 known?)

hp0,1 (r1 for C1 known?)

hp2,0 (r0 for C0 known?)

hp0,2 (r2 for C2 known?)

Figure 6.5: Main idea of the Simple approach

6.4 DPAKE 41

6.4.3 Login procedure

• Each participant Sb picks rb at random and computes a Cramer-Shoup encryption of its password
Cb = CSek(pwb; rb), with vb = cdξb .
It also chooses, for i ∈ {0, 1, 2} \ {b}, a random hash key hkb,i = (ηb,i, γb,i, θb,i, λb, κb,i) and sets
hpb,i = (hpb,i;1, hpb,i;2) = (g1

ηb,ig2
θb,ihλbcκb,i , g1

γb,idκb,i) as the projection key intended to the
participant Si.
It sends (Cb, (hpb,i)i∈{0,1,2}\{b}) to the gateway G, which broadcasts these values to the other
participants.

• After receiving the first flow from the servers, the client computes H ′i,0 = hpi,0;1
r0hpi,0:2

ξ0r0 for

i ∈ {1, 2}. It also computes H0 = H0,1 ·H0,2 · pw0
λ0 , and sets its session key KU as KU = K0 =

H ′1,0 ·H ′2,0 ·H0.
After receiving the first flow from the other server and the client, the server Sb computes, for
i ∈ {0, 3 − b}, H ′i,b = hpi,b;1

rbhpi,b;2
ξbrb . It also computes Hb = Hb,0/(Hb,3−b · pwλb

b), and sets its
partial key Kb as Kb = H ′0,b ·H ′3−b,b ·Hb. It privately sends this value Kb to the gateway G.

• The gateway finally sets KG = K1 ·K2.

6.4.4 Efficient Version

Now, instead of assuming that the servers possess share of the passwords, we assume they possess a
share of a decryption key, and that the gateway possesses the whole database of encrypted password, the
client U still owns a password π. The aim of the protocol is to establish a shared session key between
the client and the gateway.

The idea is similar to the protocol described before, except that only the client needs to compute a
ciphertext, the other ciphertext being publicly available from the database. The participants implicitly
check (using several SPHF) that the message encrypted in the ciphertext of the client is the same as the
message encrypted in the database (using the secret key shared upon the servers).

Main Idea of the Construction. Again, we denote the client U as S0 and its password π as π0. For
simplicity we assume the database contains ElGamal encryptions of each ciphertext pwUi

, under rand-
omness sUi

: CdbUi
= EGpk(pwUi

; sUi
) = (hsUipwUi

, gsUi), so that here, CdbU = EGpk(pwU; sU) = (hsUpwU, g
sU).

The client computes a Cramer-Shoup encryption of its password: C0 = CSek(pw0; r0) = (u1, u2, e, v) with
v = cdξ. The execution of the protocol should succeed if these encryptions are correct and pw0 = pwU.
Recall that the server Si knows αi such that α = α1+α2 is the decryption key of the ElGamal encryption.

The main idea is depicted on Figure 6.6, page 42. Again, for readability, the participants which have
a real role in the computations are directly linked by arrows in the picture instead of communicating via
the G.

In a classical SPHF-based two-party key-exchange between U and G, the gateway would check if C0
is a valid Cramer-Shoup encryption of pwU. Since here the password pwU is unknown to the servers S1

and S2, this is done in our setting by two SPHF, using hpCS
1 (sent by S1) and hpCS

2 (sent by S2), where
the servers use the first term of the public encryption CDB

U (hsUpwU) in order to cancel the unknown pwU.

In a classical SPHF-based two-party key-exchange between U and G, the client would also check
whether CDB

U is a valid El Gamal encryption of its password pw0, i.e. whether the gateway knows a
witness for its ciphertext CDB

U (sU in the usual constructions, α here). Since α is unknown to the gateway,

this is done in our setting by the combination of three SPHF, using hpEG
0 (sent by the client), hpEG

1 (sent
by S1) and hpEG

2 (sent by S2). These three SPHF allow the client and the servers to implicitly check that
the servers know α1 and α2 such that CDB

U can be decrypted (using the decryption key α = α1 + α2) to
the same password pw0 than the one encrypted in C0 sent by the client. Formally, the languages checked
are as follows:

• by the client:
CDB
U ∈ L0 = {C = (e, u) ∈ G2 | ∃α ∈ Zp such that h = gα and e/uα = pw0}

• by server Si (with respect to the client S0 and server Sj):
C0 ∈ Li,0 = {C = (u1, u2, e, v) ∈ G4 | ∃r ∈ Zp such that C = CSek(pwU; r) and CDB

U ∈ Li,j = {C =
(e, u) ∈ G2 | ∃αj ∈ Zp such that h = gαi+αj} and e/uαi+αj = pwU}

but they cannot be checked directly by a unique SPHF since the value pwU appearing in the languages
is unknown to the verifier Si. Rather, the server Si will use the first term of the public encryption CDB

U

(hsUpwU) in order to cancel this unknown pwU. To achieve this goal, we combine the five SPHF described

42 Symmetric Constructions (LAKE) 6.5

to globally ensure the correctness (each one remaining smooth and pseudo-randomness), as described in
the next part.

U

C0 = CSek(pw0; r0)

G

CDB
U = EGpk(pwU; sU)

sk = α1 + α2 (unknown)

S1

α1

S2

α2

hpEG
0 (α for CDB

U known?) hpEG
1

(α2 for CDB
U

known?)

hpEG
2

(α1 for CDB
U

known?)

hpCS
1 (r0 for C0 known?)

hpCS
2 (r0 for C0 known?)

Figure 6.6: Main idea of the construction

6.5 Secret Handshake

The concept of Secret Handshakes has been introduced in 2003 by Balfanz, Durfee, Shankar, Smetters,
Staddon and Wong [BDS+03] (see also [JL09b, AKB07]). It allows two members of the same group to
identify each other secretly, in the sense that each party reveals his affiliation to the other only if they
are members of the same group. At the end of the protocol, the parties can set up an ephemeral session
key for securing further communication between them and an outsider is unable to determine if the
handshake succeeded.

When compared to a PAKE, we do not require equality of the signatures possessed by the users but
an equality of the verification key vk under which those signatures are valid (this means that they were
both accredited by the same organization).

To achieve such scheme, we can proceed as with the PAKE, except with a different SPHF as shown
in Figure 6.7, page 42. For simplicity we assume the associated SPHF (for the language of committed
value fulfilling the verification equation of the signature under the parameter vk) is KV. This may not
always be the case, if the verification equation has a pairing between two parts of the signature, and
those two parts have to be hidden 3.

CRS: crs
$← SetupCom(1K).

Protocol execution by Pi with σi valid under vki:

1. Pi generates hki
$← HashKG(Lvki), hpi ← ProjKG(hki,Lvki)

2. Pi computes (Ci,wi) = Com`i(crs, σi, sid, cid, Pi, Pj) with `i = (sid, Pi, Pj , hpi)

3. Pi sends hpi,Ci to Pj , stores hki,wi, completely erases everything else.

Key computation: Upon receiving hpj ,Cj from Pj

1. Pi computes H ′i ← ProjHash(hpj , (Lvki , `i,Ci))
and Hj ← Hash(hki, (Lvki , `j ,Cj)) with `j = (sid, Pj , Pi, hpj)

2. Pi computes ski = H ′i ⊕Hj and erases everything else, except σi.

Figure 6.7: One-Round Secret Handshake from a Commitment with its KV-SPHF

?

3This problem mostly arises in compact Structure Preserving Signatures, as they can not be efficiently randomized.

Chapter 7

Asymmetric Constructions (OLBE)

Contents
7.1 OLBE . 43

7.1.1 Security Properties and Ideal Functionality of OLBE 44

7.1.2 Generic UC-Secure Instantiation of OLBE with Adaptive Security 45

7.2 Oblivious Transfer . 45

7.3 Adaptive Oblivious Transfer . 47

7.3.1 Transformation . 47

7.3.2 Constructing a Blind Fragmented IBKEM from an IBKEM 48

7.3.3 Generic Construction of Adaptive OT . 51

7.3.4 Pairing-Based Instantiation of Adaptive OT . 51

7.4 Oblivious Signature-Based Envelope . 53

7.4.1 High-Level Instantiation . 55

Continuing our cryptographic zoo; we are now considering a series of asymmetric primitives. From
a very high level, we consider protocols between a server and a user, where the user wants to retrieve
obliviously a message from a server. Of course, the server might want to allow it under maybe some
special condition.

Such protocols naturally arose from the notion of Oblivious Transfer from [Rab81]. We proposed
in [BCG16] a generalization superseding all the previous definition, together with a generic way to
achieve it.

7.1 OLBE

Similarly to LAKE, we wanted to generalize the family of protocols around Oblivious Transfer, Oblivious-
Signature Based Envelope, and so one, thus in [BCG16], we introduced the concept of Oblivious Language-
Based Envelope. In those protocols,a sender S wants to send one or several private messages (up
to nmax ≤ n) among (m1, . . . ,mn) ∈ ({0, 1}`)n to a recipient R in possession of a tuple of words x =
(xi1 , . . . , xinmax

) such that some of the words xij may belong to the corresponding language Lij . More
precisely, the receiver gets each mij as soon as xij ∈ Lij with the requirement that he gets at most
nmax messages. In such a scheme, the languages (L1, . . . ,Ln) are assumed to be a trapdoor collection
of languages, publicly verifiable and self-randomizable.

As we consider simulation-based security (in the UC framework), we allow a simulated setup SetupT
to be run instead of the classical setup Setup in order to allow the simulator to possess some trapdoors.
Those two setup algorithms should be indistinguishable.

Oblivious Language-Based Envelope
pAn OLBE scheme is defined by four algorithms (Setup,KeyGen,Samp,Verif), and one interactive protocol
Protocol〈S,R〉:
• Setup(1K), where K is the security parameter, generates the global parameters param, among which

the numbers n and nmax;

43

44 Asymmetric Constructions (OLBE) 7.1

or SetupT(1K), where K is the security parameter, additionally allows the existence1 of a trapdoor tk
for the collection of languages (L1, . . . ,Ln).

• KeyGen(param,K) generates, for all i ∈ {1, . . . , n}, the description of the language Li (as well as
the language key skLi

if need be). If the parameters param were defined by SetupT, this implicitly
also defines the common trapdoor tk for the collection of languages (L1, . . . ,Ln).

• Samp(param, I) or Samp(param, I, (skLi)i∈I) such that I ⊂ {1, . . . , n} and |I| = nmax, generates a
list of words (xi)i∈I such that xi ∈ Li for all i ∈ I;

• Verifi(xi,Li) checks whether xi is a valid word in the language Li. It outputs 1 if the word is valid,
0 otherwise;

• Protocol〈S((L1, . . . ,Ln), (m1, . . . ,mn)),R((L1, . . . ,Ln), (xi)i∈I)〉, which is executed between the
sender S with the private messages (m1, . . . , Pn) and corresponding languages (L1, . . . ,Ln), and
the recipient R with the same languages and the words (xi)i∈I with I ⊂ {1, . . . , n} and |I| = nmax,
proceeds as follows. For all i ∈ I, if the algorithm Verifi(xi,Li) returns 1, then R receives mi,
otherwise it does not. In any case, S does not learn anything.

y

7.1.1 Security Properties and Ideal Functionality of OLBE

Since we aim at proving the security in the universal composability framework, we now describe the
corresponding ideal functionality (depicted in Figure 7.1). However, in order to ease the reading, we first
list the security properties required:
• correct : the protocol actually allows R to learn (mi)i∈I , whenever (xi)i∈I are valid words of the

languages (Li)i∈I , where I ⊂ {1, . . . , n} and |I| = nmax;
• semantically secure (sem): the recipient learns nothing about the input mi of S if it does not use

a word in Li. More precisely, if S0 owns mi,0 and S1 owns mi,1, the recipient that does not use a
word in Li cannot distinguish between an interaction with S0 and an interaction with S1 even if
the receiver has seen several interactions

〈S((L1, . . . ,Ln), (m1, . . . ,mn)),R((L1, . . . ,Ln), (x ′j)j∈I)〉
with valid words x ′i ∈ Li, and the same sender’s input mi;

• escrow free (oblivious with respect to the authority): the authority corresponding to the language Li

(owner of the language secret key skLi – if it exists), playing as the sender or just eavesdropping,
is unable to distinguish whether R used a word xi in the language Li or not. This requirement
also holds for anyone holding the trapdoor key tk.

• semantically secure w.r.t. the authority (sem∗): after the interaction, the trusted authority (owner
of the language secret keys if they exist) learns nothing about the values (mi)i∈I from the transcript
of the execution. This requirement also holds for anyone holding the trapdoor key tk.

Moreover, the Setups should be indistinguishable and it should be infeasible to find a word belonging
to two or more languages without the knowledge of tk.

The functionality FOLBE is parametrized by a security parameter K and a set of languages (L1, . . . ,Ln)
along with the corresponding public verification algorithms (Verif1, . . . ,Verifn). It interacts with an
adversary S and a set of parties P1,. . . ,PN via the following queries:
• Upon receiving from party Pi an input of the form (Send, sid, ssid,Pi,Pj,

(m1, . . . ,mn)) , with mk ∈ {0, 1}K for all k: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn))
and reveal (Send, sid, ssid,Pi,Pj) to the adversary S. Ignore further Send-message with the same
ssid from Pi.

• Upon receiving an input of the form (Receive, sid, ssid,Pi,Pj, (xi)i∈I) where
I ⊂ {1, . . . , n} and |I| = nmax from party Pj : ignore the message if
(sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to
the adversary S and send the message (Received, sid, ssid,Pi,Pj , (m

′
k)k∈I) to Pj where m′k = mk

if Verifk(xk,Lk) returns 1, and m′k = ⊥ otherwise. Ignore further Received-message with the
same ssid from Pj .

Figure 7.1: Ideal Functionality for Oblivious Language-Based Envelope FOLBE

The ideal functionality is parametrized by a set of languages (L1, . . . ,Ln). We use the simple UC
framework for simplicity (this enables us to get rid of Sent and Received queries from the adversary

1The specific trapdoor will depend on the languages and be computed in the KeyGen algorithm.

7.2 Oblivious Transfer 45

since the delayed outputs are automatically considered in this simpler framework: We implicitly let the
adversary determine if it wants to acknowledge the fact that a message was indeed sent). The first step
for the sender (Send query) consists in telling the functionality he is willing to take part in the protocol,
giving as input his intended receiver and the messages he is willing to send (up to nmax messages). For
the receiver, the first step (Receive query) consists in giving the functionality the name of the player he
intends to receive the messages from, as well as his words. If the word does belong to the language, the
receiver recovers the sent message, otherwise, he only gets a special symbol ⊥.

7.1.2 Generic UC-Secure Instantiation of OLBE with Adaptive Security

For the sake of clarity, we focuses on the specific case where nmax = 1. This is the most classical case in
practice. In order to get a generic protocol in which nmax > 1, one simply has to run nmax protocols in
parallel.

This modifies the algorithms Samp and Verify as follows: Samp(param, {i}) or Samp(param, {i}, {skLi
})

generates a word x = xi ∈ Li and Verifj(x ,Lj) checks whether x is a valid word in Lj .

Let us introduce our protocol OLBE: we will call R the receiver and S the sender. If R is an honest
receiver, then he knows a word x = xi in one of the languages Li. If S is an honest sender, then he
wants to send up a message among (m1, . . . ,mn) ∈ ({0, 1}K)n to R. We assume the languages Li to
be self-randomizable and publicly verifiable. We also assume the collection of languages (L1, . . . ,Ln)
possess a trapdoor, that the simulator is able to find by programming the common reference string. As
recalled in the previous section, this trapdoor enables him to find a word lying in the intersection of the
n languages. This should be infeasible without the knowledge of the trapdoor. Intuitively, this allows
the simulator to commit to all languages at once, postponing the time when it needs to choose the exact
language he wants to bind to. On the opposite, if a user was granted the same possibilities, this would
prevent the simulator to extract the chosen language.

We require labeled CCA-encryption scheme E = (Setupcca,KeyGencca,Encrypt
`
cca,Decrypt

`
cca) compati-

ble with an SPHF onto a set H. In the KeyGen algorithm, the description of the languages (L1, . . . ,Ln)
thus implicitly defines the languages (L c

1 , . . . ,L
c
n) of CCA-encryptions of elements from these languages.

We additionally use a key derivation function KDF to derive a pseudo-random bit-string K ∈ {0, 1}K
from a pseudo-random element v ∈ H. One can use the Leftover-Hash Lemma [HILL99], with a random
seed defined in param during the global setup, to extract the entropy from v, then followed by a pseudo-
random generator to get a long enough bit-string. Many uses of the same seed in the Leftover-Hash
Lemma just lead to a security loss linear in the number of extractions. We also assume the existence of a
Pseudo-Random Generator (PRG) F with input size equal to the plaintext size, and output size equal to
the size of the messages in the database and an IND− CPAencryption scheme E = (Setupcpa,KeyGencpa,
Encryptcpa,Decryptcpa) with plaintext size at least equal to the security parameter.

Theorem 7.1.1 The oblivious language-based envelope scheme described in Figure 7.2 is UC-secure in
the presence of adaptive adversaries, assuming reliable erasures, an IND− CPAencryption scheme, and
an IND− CCA2encryption scheme admitting an SPHF on the language of valid ciphertexts of elements
of Li for all i, as soon as the languages are self-randomizable, publicly-verifiable and admit a common
trapdoor.

When this generic framework was proposed, it lead to the most efficient constructions of various
protocols.

7.2 Oblivious Transfer

Oblivious Transfer is probably the most known primitive in this category since its introduction in 1981
by Rabin [Rab81]. A server has a database of n lines, a user wants to retrieve a line without letting the
server learning which. We recall the functionality in 7.3, page 46.

Through several papers [ABB+13, BC15, BC16], we perfected our approach and proposed efficient
Oblivious Transfer Scheme under various hypotheses (DQR, k-MDDH, LWE/SIS, . . .). In Table 7.1,
page 47, we show a progression in the efficiency of our schemes, in comparison to the state of the art. It
should be noted that [BC15] manages to get rid of pairing which arguably is worth the little trade-off
in efficiency. [BCG17] does not exactly follow the framework (SPHF are superseded by Quasi-Adaptive
NIZK), but like [BC16] based on SP-SPHF, it manages to get rid of the extra logarithmic overhead which
seemed artificial.

46 Asymmetric Constructions (OLBE) 7.2

CRS: param
$← Setup(1K), paramcca

$← Setupcca(1K), paramcpa
$← Setupcpa(1K).

Pre-flow:

1. Sender generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk and completely erases

the random coins used by KeyGen.

2. Sender sends pk to User.

Flow From the Receiver R:

1. User chooses a random value J , computes R ← F (J) and encrypts J under pk: c
$←

Encryptcpa(pk, J).

2. User computes C
$← Encrypt`cca(x ; r) with ` = (sid, ssid,R,S).

3. User completely erases J and the random coins used by Encryptcpa and sends C and c to Sender.
He also checks the validity of his words: the receiver only keeps the random coins used by
Encryptcca for the j such that Verifj(x ,Lj) = 1 (since he knows they will be useless otherwise).

Flow From the Sender S:

1. Sender decrypts J ← Decryptcpa(sk, c) and then R← F (J).

2. For all j ∈ {1, . . . , n}, sender computes hkj = HashKG(`,L c
j , param), hpj =

ProjKG(hkj , `, (L c
j , param)), vj = Hash(hkj , (L c

j , param), (`, C)), Qj = mj ⊕ KDF(vj)⊕R.

3. Sender erases everything except (Qj , hpj)j∈{1,...,n} and sends them over a secure channel.

Message recovery:
Upon receiving (Qj , hpj)j∈{1,...,n}, R can recover mi by computing mi = Qi ⊕
ProjHash(hpi, (L

c
i , param), (`, C), r)⊕R.

Figure 7.2: UC-Secure OLBE for One Message (Secure Against Adaptive Corruptions)

The functionality F(1,n)-OT is parametrized by a security parameter K. It interacts with an adversary S
and a set of parties P1,. . . ,PN via the following queries:
• Upon receiving an input (Send, sid, ssid,Pi,Pj, (m1, . . . ,mn)) from Pi, with mk ∈
{0, 1}K: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal (Send, sid, ssid,Pi,Pj) to S.
Ignore further Send-message with the same ssid from Pi.

• Upon receiving an input (Receive, sid, ssid,Pi,Pj, s) from Pj, with s ∈ {1, . . . , n}:
ignore the message if (sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not recorded; otherwise reveal
(Receive, sid, ssid,Pi,Pj) to S, send (Received, sid, ssid,Pi,Pj ,ms) to Pj and ignore further
Receive-message with the same ssid from Pj .

Figure 7.3: Ideal Functionality for 1-out-of-n Oblivious Transfer F(1,n)-OT

[ABB+13] was the first step, we considered once again the Haralambiev commitment as the basis of
our construction, we used it to do a bit-per-bit commitment to line, and then used several SPHF to hide
every line behind noise besides the expected one.

[BC15] was a side-step. We aimed at generalizing Haralambiev commitment, and we did so by
explaining it as combination of a CCA-2 encryption with (explainable/verifiable) Chameleon Hashes.
We achieved two things with this: on one hand we generalized our construction to non elliptic curve
hypotheses, on the other we managed to get rid of the pairing and rely on the classical DDH problem.
It should be noted that this is done by abusing from the required artificial pre-flow, and probably if in
the future, we manage to get rid of this flow, then the technique proposed specifically for DDH will not
be transposable.

[BC16] introduced Structure-Preserving Hash Functions, which for PAKE this allowed to commit to
the line in only one constant size commitment. The server still needs to send elements for every line,
however the user now has a constant communication cost. However, this requires pairing...

[BCG17] proposed a generic transformation from PAKE to Oblivious-Transfer (the other way was

7.3 Adaptive Oblivious Transfer 47

already known). We managed to reexplain various existing protocols, and also build a new Oblivious
Transfer from the most efficient PAKE to date [JR15]. While not directly based on SPHF, this Oblivious
Transfer is the most efficient to date, and uses similar tricks2.

The table 7.1 presents a comparison of those various schemes with preexisting ones. As usual, it
should be noted that that some optimizations arise when setting n = 2.

Table 7.1: Comparison to existing Oblivious Transfer

Paper Assumption # Group elements # Rounds

Static Security (1-out-of-2)
[PVW08] + [GWZ09] SXDH 51 8

[CKWZ13] SXDH 26 + 7 Zp 4
Adaptive Security (1-out-of-2)

[ABB+13] SXDH 12 G1 + 1 G2 + 2Zp 3
[BC15] DDH 15 G+ 2 Zp 3
[BC16] SXDH 12 G1 + 4 G2 + 2 Zp 3

[BCG17] SXDH 6 G1 + 2 G2 + 2 Zp 3

Adaptive Security (1-out-of-n)
[ABB+13] SXDH log n G1 + (n+ 8 log n) G2 + n Zp 3

[BC15] DDH (n+ 9 log n+ 4) G + 2n Zp 3
[BC16] SXDH 4 G1 + (4n+ 4) G2 + n Zp 3

[BCG17] SXDH 4 G1 + (n+ 2) G2 + n Zp 3

7.3 Adaptive Oblivious Transfer

Due to their huge interest in practice, it is important to achieve low communication on these Oblivious
Transfer protocols. A usual drawback is that the server usually has to send a message equivalent to the
whole database each time the user requests a line. If it is logical, in the UC framework, that an OT
protocol requires a cost linear in the size of the database for the first line queried3. One may then hope
to amortize the cost for further queries between the same server and the same user (or even another
user, if possible), reducing the efficiency gap between Private Information Retrieval schemes and their
stronger equivalent Oblivious Transfer schemes. We thus deal in this paper with a more efficient way,
which is to achieve Adaptive Oblivious Transfer, in which the user can adaptively ask several lines of the
database. In such schemes, the server only sends his database once at the beginning of the protocol, and
all the subsequent communication is in o(n), more precisely logarithmic. The linear cost is batched once
and for all in this preprocessing phase, achieving then a logarithmic complexity closer to the best PIR
schemes.

Adaptive versions of those protocols were already studied by [NP97,GH07,KNP11], and more recently
UC secure instantiations were proposed, but unfortunately either under the Random Oracle, or under
not so standard assumptions such as q-Hidden LRSW or later on q-SDH [CNs07,JL09a,RKP09,CDH12,
GD14], but without allowing adaptive corruptions.

We tried to improve this in two ways, first we allowed adaptive corruptions on the user side. The
server has to commit the database at the very beginning, hence it seems complicated to allow corruptions
beyond this point4, while relying on a standard hypothesis (k-MDDH).

7.3.1 Transformation

Our construction builds upon the UC-secure OT scheme from [BC15], with ideas inspired from [GH07],
who propose a neat framework allowing to achieve adaptive Oblivious Transfer (but not in the UC
framework). Their construction is quite simple: It requires a blind Identity-Based Encryption, in other
words, an IBE scheme in which there is a way to query for a user key generation without the authority
(here the server) learning the targeted identity (here the line in the database). Once such a Blind IBE

2It seems likely that QA-NIZK and SPHF are very close, however due to the argument that SPHF can not exist for all
NP, a separation will remain

3Assuming adaptive corruptions, we need to be able to explain the last flow once corrupted, hence the last flow needs
enough entropy to be equivocated back to the full database.

4With our approach one would simply need a non-committing affine identity-based encryption.

48 Asymmetric Constructions (OLBE) 7.3

The functionality FL
OT is parametrized by a security parameter K and a set of languages (L1, . . . ,Ln)

along with the corresponding public verification algorithms (Verif1, . . . ,Verifn). It interacts with an
adversary S and a set of parties P1,. . . ,PN via the following queries:
• Upon receiving an input (NewDataBase, sid, ssid,Pi,Pj, (m1, . . . ,mn)) from party

Pi , with mi ∈ {0, 1}K for all i: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal
(Send, sid, ssid,Pi,Pj) to the adversary S. Ignore further NewDataBase-message with the same
ssid from Pi.

• Upon receiving an input (Receive, sid, ssid,Pi,Pj, xi) from party Pj : ignore the message
if (sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to
the adversary S and send (Received, sid, ssid,Pi,Pj ,m

′
i) to Pj where m′i = mi if Verifi(xi,Li)

returns 1, and m′i = ⊥ otherwise.
(Non-Adaptive case: Ignore further Receive-message with the same ssid from Pj.)

Figure 7.4: Ideal Functionality for (Adaptive) Oblivious Transfer FL
OT

is defined, one can conveniently obtain an oblivious transfer protocol by asking the database to encrypt
(once and for all) each line for an identity (the j-th line being encrypted for the identity j), and having
the user do a blind user key generation query for identity i in order to recover the key corresponding to
the line i he expects to learn.

This approach is round-optimal: After the database preparation, the first flow is sent by the user
as a commitment to the identity i, and the second one is sent by the server with the blinded requested
information. But several technicalities arise because of the UC framework we consider here. For instance,
the blinded expected information has to be masked, we do this here using an SPHF. Furthermore, instead
of using simple line numbers as identities, we have to commit to words in specific languages (so as to
ensure extractability and equivocability) as well as to fragment the IBE keys into bits in order to achieve
O(log n) in both flows. This allows us to achieve the first UC-secure adaptive OT protocol allowing
adaptive corruptions of the user.

7.3.2 Constructing a Blind Fragmented IBKEM from an IBKEM

Definition and Security Properties of a Blind IBKEM Scheme.

We follow the definition and security definitions used in [BKP14] for an Identity-Based Key Encapsulation
(IBKEM) scheme. We continue to follow the KEM formalism by adapting the definition of a Blind IBE
scheme given in [GH07] to this setting.

Blind Identity-Based Key Encapsulation Scheme
p A BlindIBKEM consists of four PPT algorithms (Gen,BlindUSKGen,Enc,Dec) with the following pro-
perties:
• Gen, Enc and Dec are defined as for a traditional IBKEM scheme.
• BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉) is an interactive protocol, in which an honest user U with

identity id ∈ ID obtains the corresponding user secret key usk[id] from the master authority S or
outputs an error message, while S’s output is nothing or an error message (` is a label and ρ the
randomness).

y

Defining the security of a BlindIBKEM requires two additional properties, stated as follows (see [GH07,
pages 6 and 7] for the formal security games):

1. Leak-free Secret Key Generation (called Leak-free Extract for Blind IBE security in the original
paper): A potentially malicious user cannot learn anything by executing the BlindUSKGen protocol
with an honest authority which he could not have learned by executing the USKGen protocol with
an honest authority; Moreover, as in USKGen, the user must know the identity for which he is
extracting a key.

2. Selective-failure Blindness: A potentially malicious authority cannot learn anything about the
user’s choice of identity during the BlindUSKGen protocol; moreover, the authority cannot cause
the BlindUSKGen protocol to fail in a manner dependent on the user’s choice.

7.3 Adaptive Oblivious Transfer 49

For our applications, we only need a weakened property for blindness:5

3. Weak Blindness: A potentially malicious authority cannot learn anything about the user’s choice
of identity during the BlindUSKGen protocol.

High-Level Idea of the Transformation.

We now show how to obtain a BlindIBKEM scheme from any IBKEM scheme. From a high-level point of
view, this transformation mixes two pre-existing approaches.

First, we are going to consider a reverse Naor transform [BF01,CFH+07]: He drew a parallel between
Identity-Based Encryption schemes and signature schemes, by showing that a user secret key on an
identity can be viewed as the signature on this identity, the verification process therefore being a test
that any chosen valid ciphertext for the said identity can indeed be decrypted using the signature scheme.

Then, we are going to use Fischlin [Fis06] round-optimal approach to blind signatures, where the whole
interaction is done in one pass: First, the user commits to the message, then he recovers a signature
linked to his commitment. For sake of simplicity, instead of using a Non-Interactive Zero-Knowledge
Proof of Knowledge of a signature, we are going to follow the [BFPV10,BPV12] approach, where thanks
to an additional term, the user can extract a signature on the identity from a signature on the committed
identity.

Omitting technical details described more precisely in the following sections, the main idea of the
transformation of the IBKEM scheme in order to blind a user key request is described in Figure 7.5,
page 49.

������ Authority

busk[id]usk[id]

id

B
lin
dU

S
K
G
en

(m
sk
,C

;t
)

C
Commit(id; ρ)

Recover(busk[id], ρ)

User

1. A user commits to the targeted identity id
using some randomness ρ.

2. The authority possesses an algorithm allo-
wing it to generate keys for committed iden-
tities using its master secret key msk, and
some randomness t, in order to obtain a blin-
ded user secret key busk[id].

3. The user using solely the randomness used
in the initial commitment is able to recover
the requested secret key from the authority’s
generated value.

Figure 7.5: Generic Transformation of an IBKEM into a Blind IBKEM (naive approach)

Generic Transformation of an IBKEM into a Blind IBKEM.

It now remains to explain how one can fulfill the idea highlighted in Figure 7.5, page 49. The technique to
blind a user key request uses a smooth projective hash function, and is often called implicit decommitment
in recent works: the IBKEM secret key is sent hidden in such a way that it can only be recovered if the
user knows how to open the initial commitment on the correct identity. We assume the existence of a
labeled CCA-encryption scheme compatible with an SPHF. By “compatible”, we mean that the SPHF
can be defined over a language LC,id ⊂ X, where LC,id = {C | ∃ρ such that C = Encrypt`cca(id;ρ)}. We

additionally use a key derivation function KDF to derive a pseudo-random bit-string K ∈ {0, 1}K from a
pseudo-random element v. One can use the Leftover-Hash Lemma [HILL99], with a random seed defined
in param during the global setup, to extract the entropy from v, then followed by a pseudo-random
generator to get a long enough bit-string. Many uses of the same seed in the Leftover-Hash Lemma

5Two things to note: First, Selective Failure would be considered as a Denial of Service in the Oblivious Transfer
setting. Then, we do not restrict ourselves to schemes where the blindness adversary has access to the generated user keys,
as reliable erasures in the OT protocol provide us a way to forget them before being corrupted (otherwise we would need
to use a randomizable base IBE).

50 Asymmetric Constructions (OLBE) 7.3

just lead to a security loss linear in the number of extractions. This gives the following protocol for
BlindUSKGen, described in Figure 7.6, page 50.

• The user computes an encryption of the expected identity id and keeps the randomness ρ: C =
Encrypt`cca(id;ρ)}.

• For every identity id′, the server computes usk[id′] along with a pair of (secret, public) hash
keys (hkid′ , hpid′) for a smooth projective hash function on the language LC,id′ : hkid′ =
HashKG(`,LC,id′ , param) and hpid′ = ProjKG(hkid′ , `, (LC,id′ , param)). He also compute the cor-
responding hash value Hid′ = Hash(hkid′ , (LC,id′ , param), (`, C)). Finally, he sends (hpid′ , usk[id′] ⊕
KDF(Hid′)) for every id′, where ⊕ is a compatible operation.

• Thanks to hpid, the user is able to compute the corresponding projected hash value H ′id =
ProjHash(hpid, (LC,id, param), (`, C),ρ). He then recovers usk[id] for the initially committed identity
id since Hid = H ′id.

Figure 7.6: Summary of the Generic Construction of BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉) for a blind IBE

Theorem 7.3.1 If IBKEM is a PR-ID-CPA-secure identity-based key encapsulation scheme and E a la-
beled CCA-encryption scheme compatible with an SPHF, then BlindIBKEM is leak free and weak blind.

Proof: First, BlindIBKEM satisfies leak-free secret key generation since it relies on the CCA security on
the encryption scheme, forbidding a user to open it to another identity than the one initially encrypted.
Furthermore, the pseudo-randomness of the SPHF ensures that the blinded user key received for id is
indistinguishable from random if he encrypted id′ 6= id. Finally, the weak blindness also relies on the
CCA security on the encryption scheme, since an encryption of id is indistinguishable from a encryption
of id′ 6= id. �

Using a Blind IBKEM in our Application to Adaptive Oblivious Transfer.

The previous approach allows to transform an IBKEM into a Blind IBKEM, but it has a huge drawback
in our context: Since we assume an exponential identity space, it requires an exponential number of
answers from the authority, which cannot help us to fulfill logarithmic complexity in our application.
However, if we focus on the special case of affine IBE with bitwise function6, a user key can be described
as the list (usk[0], usk[0, id0], . . . , usk[m − 1, idm−1]) if idi is the i-th bit of the identity id. One can thus
manage to be much more efficient by sending each “bit” evaluation on the user secret key, hidden with a
smooth projective hash value on the language “the i-th bit of the identity is a 0 (or 1)”, which is common
to all identities. We can thus reduce the number of languages from the number of identities (which is
exponential) to the length of an identity (which is polynomial). For security reasons, one cannot give
directly the evaluation value, but as we are considering the sum of the evaluations for each bit, we simply
add a Shamir-like secret sharing, by adding randomness that is going to cancel out at the end.

As a last step, we finally need to make our construction compatible with the UC framework with
adaptive corruptions. In this context, interactions should make sense for any possible input chosen by
the environment and learnt a posteriori in the simulation during the corruption of an honest party. From
the user side, this implies that the last flow should contain enough recoverable information so that a
simulator, having sent a commitment to an incorrect identity, can extract the proper user secret key
corresponding to the correct identity recovered after the corruption. From the server side, this implies
that the IBKEM scheme is defined such as one is able to adapt the user secret keys in order to correspond
to the new database learnt a posteriori. Of course, not all schemes allow this property, but this will be
the case in the pairing scenario considered in our concrete instantiation.

To deal with corruptions of the user, recall that a simulated server (knowing the secret key of the
encryption scheme) is already able to extract the identity committed to. But we now consider that, for

all id, Lid is the language of the equivocable commitments on words in the inner language L̃id = {id}.
We assume them to be a Trapdoor Collection of Languages, which means that it is computationally
hard to sample an element in L1 ∩ · · · ∩Ln, except for the simulator, who possesses a trapdoor tk (the
equivocation trapdoor) allowing it to sample an element in the intersection of languages. This allows a
simulated user (knowing this trapdoor) not to really bind to any identity during the commitment phase.
The only difference with the algorithm described in Figure 7.7, page 51 is that the user now encrypts

6They were defined in [BKP14]. Affine IBE derive their name from the fact that only affine operations are done on the
identity bits (no hashing, square rooting, inverting... are allowed).

7.3 Adaptive Oblivious Transfer 51

• The user computes a bit-per-bit encryption of the expected identity id and keeps the randomness
ρ: C = Encrypt`cca(id;ρ)}.

• The server computes a fragmented version of all the keys usk[id′], i.e. all the values usk[i, b]
for i from 0 up to the length m of the keys and b ∈ {0, 1}. He also computes a pair
of (secret, public) hash keys (hki,b, hpi,b) for a smooth projective hash function on the lan-
guage LC,i,b: “The i-th bit of value encrypted into C is b”, i.e. hki,b = HashKG(`,LC,i,b, param)
and hpi,b = ProjKG(hki,b, `, (LC,i,b, param)). He also computes the corresponding hash value
Hi,b = Hash(hki,b, (LC,i,b, param), (`, C)) and chooses random values zi. Finally, he sends, for each

(i, b), (hpi,b, busk[i, b]), where busk[i, b] = usk[i, b]⊕KDF(Hi,b)⊕zi, together with Z = usk0	
(⊕

i zi

)
,

where ⊕ is a compatible operation and 	 its inverse.
• Thanks to the hpi,idi for the initially committed identity id, the user is able to compute the corre-

sponding projected hash value H ′i,idi = ProjHash(hpi,idi , (LC,i,idi , param), (`, C),ρ), that should be
equal to Hi,idi for all i. From the values busk[i, idi], he then recovers usk[i, idi] ⊕ zi. Finally, with

the operation
(⊕

i(usk[i, idi]⊕ zi)
)
⊕ Z, he recovers the expected usk[id].

Figure 7.7: Summary of the Generic Construction of BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉) for a Blind
affine IBE

this word x (which is an equivocable commitment on his identity id) rather than directly encrypting his
identity id: C = Encrypt`cca(x ;ρ).

7.3.3 Generic Construction of Adaptive OT

We derive from here our generic construction of OT (depicted in Figure 7.8, page 52). We additionally
assume the existence of a Pseudo-Random Generator (PRG) F with input size equal to the plaintext
size, and output size equal to the size of the messages in the database and an IND− CPAencryption
scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at least equal to the security
parameter. First, the owner of the database generates the keys for such an IBE scheme, and encrypts
each line i of the database for the identity i. Then when a user wants to request a given line, he runs
the blind user key generation algorithm and recovers the key for the expected given line. This leads to
the following security result, proven in [BCG16].

Theorem 7.3.2 Assuming that BlindUSKGen is constructed as described above, the adaptive Oblivious
Transfer protocol described in Figure 7.8, page 52 UC-realizes the functionality FL

OT presented in Fi-
gure 7.4, page 48 with adaptive corruptions assuming reliable erasures.

7.3.4 Pairing-Based Instantiation of Adaptive OT
Affine Bit-Wise Blind IBE. In [BKP14], we proposed a generic framework to move from affine
Message Authentication Code to IBE, and then a tight instantiation of such a MAC, giving an affine
bit-wise IBE, which seems like a good candidate for our setting (making it blind and fragmented).

We are thus going to use the family of IBE described in the following picture (Figure 7.9, page 52),
which is their instantiation derived from a Naor-Reingold MAC7. In the following, hi() are injective
deterministic public functions mapping a bit to a scalar in Zp.

A property that was not studied in this paper was the blind user key generation: How to generate
and answer blind user secret key queries? We answer to this question by proposing the k-MDDH-based
variation presented in Figure 7.10, page 53. To fit the global framework we are going to consider the
language of Haralambiev commitments. We denote this process as Har in the following protocol, and by
LHar,i,idi the language on identity bits. We thus obtain the following security results.

Theorem 7.3.3 This construction achieves both the weak Blindness, and the leak-free secret key gene-
ration requirements under the k-MDDH assumption.

The first one is true under the indistinguishability of the generalized Cramer-Shoup encryption, as
the server learns nothing about the line requested during the first flow. It should even be noted that
because of the inner chameleon hash, a simulator is able to use the trapdoor to do a commitment to

7For the reader familiar with the original result, we combine x,y into a bigger y to lighten the notations, and compact
the (x′i, y

′
i) values into a single y′ as this has no impact on their construction.

52 Asymmetric Constructions (OLBE) 7.3

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1K).

Database Preparation:
1. Server runs Gen(K), to obtain mpk,msk.

2. For each line t, he computes (Dt,Kt) = Enc(mpk, t), and Lt = Kt ⊕DB(t).

3. He also computes usk[i, b] for all i = 1 . . . ,m and b = 0, 1 and erases msk.

4. Server generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk and completely erases

the random coins used by KeyGen.

5. He then publishes mpk, {(Dt, Lt)}t, pk.
Index query on s:

1. User chooses a random value S, computes R← F (S) and encrypts S under pk:

c
$← Encryptcpa(pk, S)

2. User computes C with the first flow of BlindUSKGen(〈(S,msk)(U , s, `;ρ)〉) with ` = (sid, ssid,U ,S)
(see Figure 7.7, page 51).

3. User stores the random ρs = {ρ∗} needed to open C to s, and completely erases the rest, including
the random coins used by Encryptcpa and sends (c, C) to the Server

IBE input msk:
1. Server decrypts S ← Decryptcpa(sk, c) and computes R← F (S)

2. Server runs the second flow of BlindUSKGen(〈(S,msk)(U , s, `;ρ)〉) on C (see Figure 7.7, page 51).

3. Server erases every new value except (hpi,b)i,b, (busk[i, b])i,b, Z ⊕R and sends them over a secure
channel.

Data recovery:
1. User then using, ρs recovers usk[s] from the values received from the server.

2. He can then recover the expected information with Dec(usk[s], s,Ds)⊕Ls and erases everything
else.

Figure 7.8: Adaptive UC-Secure 1-out-of-n OT from a Fragmented Blind IBE

Gen(K):

A
$← Dk,B = A

For i ∈ J0, `K : Yi
$← Zk+1

p ; Zi = Y>i ·A ∈ Zkp
y′

$← Zk+1
p ; z′ = y′

> ·A ∈ Zkp
mpk := (G, [A]1, ([Zi]1)i∈J0,`K, [z

′]1)
msk := (Yi)i∈J0,`K,y

′

Return (mpk,msk)

USKGen(msk, id):

s
$← Zkp, t = Bs

w = (Y0

∑`
i=1 idiYi)t + y′ ∈ Zk+1

p

Return usk[id] := ([t]2, [w]2) ∈ Gk+k+1
2

Enc(mpk, id):

r
$← Zkp

c0 = Ar ∈ Zk+1
p

c1 = (Z0

∑`
i=0 hi(idi)Zi) · r ∈ Zp

K = z′ · r ∈ Zp.
Return [K]T and C = ([c0]1, [c1]1) ∈ Gk+1+1

1

Dec(usk[id], id,C):

Parse usk[id] = ([t]2, [w]2)
Parse C = ([c0]1, [c1]1)
K = e([c0]1, [w]2) · e([c1]1, [t]2)−1

Return K ∈ GT

Figure 7.9: A fragmentable affine IBKEM.

every possible words of the set of languages at once, and so can adaptively decide which id he requested.
The proof of the second result is detailed in [BCG16].

For sake of generality, any bit-wise affine IBE could work (like for example Waters IBE [Wat05]), the
additional price paid for tightness here is very small and allows to have a better reduction in the proof,
but it it not required by the framework itself.

Adaptive UC-Secure Oblivious Transfer. We finally get our instantiation by combining this k-
MDDH-based blind IBE with a k − MDDH variant of ElGamal for the CPA encryption needed. The
requirement on the IBE blind user secret key generation (being able to adapt the key if the line changes) is
achieved assuming that the server knows the discrete logarithms of the database lines. This is quite easy
to achieve by assuming that for all line s, DB(s) = [db(s)]1 where db(s) is the real line (thus known). It

7.4 Oblivious Signature-Based Envelope 53

• First flow: U starts by computing

ρ
$← Z1+4×`

p ,

a,d = Har(id, `; ρ) ∈ Z`p × Z2×(k+3)`
p ,

Sends C = ([a]1, [d]2) to S
• Second Flow: S then proceeds

s
$← Zkp, t = Bs, f

$← Z`×k+1
p ,

For each i ∈ J1, dlogneK, b ∈ J0, 1K:
hki,b = HashKG(LHar,i,b,C)
hpi,b = ProjKG(hki,b,LHar,i,b,C)
Hi,b = Hash(hki,b,LHar,i,b,C)
ωi,b = (bYi)t + fi +Hi,b

Then sets w0 = Y0t + y′ −
∑`
i=1 fi ∈ Zk+1

p

Returns busk :=
([t]2, [w0]2, {[ωi,b]2}, {[hpi,b]2})
• BlindUSKGen3: U then recovers his key

For each i ∈ J1, `K:
H ′i =

ProjHash(hpi,idi ,LHar,i,idi ,C, ρi)
wi = ωi,idi −H

′
i

w = w0 +
∑`
i=1 wi

And then recovers usk[id] :=
[t]2, [w]2

Figure 7.10: BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉).
implies a few more computation on the user’s side in order to recover db(s) from DB(s), but this remains
completely feasible if the lines belong to a small space. For practical applications, one could imagine to
split all 256-bit lines into 8 pieces for a decent/constant trade-off in favor of computational efficiency.

For k = 1, so under the classical SXDH assumption, the first flow requires 8 log |DB| elements in G1

for the CCA encryption part and log(|DB|+1) in G2 for the chameleon one, while the second flow would
now require 1 + 4 log |DB| elements in G1, 1 + 2 log |DB| for the fragmented masked key, and 2 log |DB|
for the projection keys.

7.4 Oblivious Signature-Based Envelope

Oblivious Signature-Based Envelope (OSBE) were introduced in [LDB03]. It can be viewed as an efficient
way to ease the asymmetrical aspect of several authentication protocols. Alice is a member of an
organization and possesses a certificate produced by an authority attesting she is in this organization.
Bob wants to send a private message P to members of this organization. However due to the sensitive
nature of the organization, Alice does not want to give Bob neither her certificate nor a proof she belongs
to the organization. OSBE lets Bob sends an obfuscated version of this message P to Alice, in such a
way that Alice will be able to find P if and only if Alice is in the required organization. In the process,
Bob cannot decide whether Alice does really belong to the organization.

Oblivious Signature-Based Envelope
p An OSBE scheme is defined by four algorithms (OSBESetup,OSBEKeyGen,OSBESign,OSBEVerif), and
one interactive protocol OSBEProtocol〈S,R〉:
• OSBESetup(1k), where k is the security parameter, generates the global parameters param;
• OSBEKeyGen(param) generates the keys (vk, sk) of the certification authority;
• OSBESign(sk,m) produces a signature σ on the input message m, under the signing key sk;
• OSBEVerif(vk,m, σ) checks whether σ is a valid signature on m, w.r.t. the public key vk; it outputs

1 if the signature is valid, and 0 otherwise.
• OSBEProtocol〈S(vk,M, P),R(vk,M, σ)〉 between the sender S with the private message P , and

the recipient R with a certificate σ. If σ is a valid signature under vk on the common message M ,
then R receives P , otherwise it receives nothing. In any case, S does not learn anything.

y

Such an OSBE scheme should be (the three last properties are additional —or stronger— security
properties from the original definitions [LDB03]):
• correct : the protocol actually allows R to learn P , whenever σ is a valid signature on M under vk;
• oblivious: the sender should not be able to distinguish whether R uses a valid signature σ on M

under vk as input. More precisely, if R0 knows and uses a valid signature σ and R1 does not use
such a valid signature, the sender cannot distinguish an interaction with R0 from an interaction
with R1;

• (weakly) semantically secure: the recipient learns nothing about S input P if it does not use a valid
signature σ on M under vk as input. More precisely, if S0 owns P0 and S1 owns P1, the recipient
that does not use a valid signature cannot distinguish an interaction with S0 from an interaction
with S1;

• semantically secure (denoted sem): the above indistinguishability should hold even if the receiver
has seen several interactions 〈S(vk,M, P),R(vk,M, σ)〉 with valid signatures, and the same sender’s
input P ;

54 Asymmetric Constructions (OLBE) 7.4

ExpoblA−bOSBE,A(k) [Escrow Free property]

1. param← OSBESetup(1k)
2. vk← A(INIT : param)
3. (M,σ)← A(FIND : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
4. OSBEProtocol〈A, Rec∗(vk,M, σ, b)〉
5. b′ ← A(GUESS : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
6. RETURN b′

Expsem
∗−b

OSBE,A(k) [Semantic security w.r.t. the authority]

1. param← OSBESetup(1k)
2. vk← A(INIT : param)
3. (M,σ, P0, P1)← A(FIND : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
4. transcript← OSBEProtocol〈Send(vk,M, Pb), Rec

∗(vk,M, σ, 0〉
5. b′ ← A(GUESS : transcript, Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
6. RETURN b′

Expsem−bOSBE,A(k) [Semantic Security]

1. param← OSBESetup(1k)
2. (vk, sk)← OSBEKeyGen(param)
3. (M,P0, P1)← A(FIND : vk, Sign∗(vk, ·), Send(vk, ·, ·), Rec(vk, ·, 0), Exec(vk, ·, ·))
4. OSBEProtocol〈Send(vk,M, Pb),A〉
5. b′ ← A(GUESS : Sign(vk, ·), Send(vk, ·, ·), Rec(vk, ·, 0), Exec(vk, ·, ·))
6. IF M ∈ SM RETURN 0 ELSE RETURN b′

Figure 7.11: Security Games for OSBE

• escrow free (denoted oblA): the authority (owner of the signing key sk), playing as the sender or
just eavesdropping, is unable to distinguish whether R used a valid signature σ on M under vk
as input. This notion supersedes the above oblivious property, since this is essentially oblivious
w.r.t. the authority, without any restriction.

• semantically secure w.r.t. the authority (denoted sem∗): after the interaction, the authority (owner
of the signing key sk) learns nothing about P .

We insist that the escrow-free property (oblA) is stronger than the oblivious property, hence we will
consider the former only. However, the semantic security w.r.t. the authority (sem∗) is independent from
the basic semantic security (sem) since in the latter the adversary interacts with the sender whereas
in the former the adversary (who generated the signing keys) has only passive access to a challenge
transcript.

These security notions can be formalized by the security games presented on Figure 7.11, page 54,
where the adversary keeps some internal state between the various calls INIT, FIND and GUESS. They
make use of the oracles described below, and the advantages of the adversary are, for all the security
notions,

Adv∗OSBE,A(k) = Pr[Exp∗−1
OSBE,A(k) = 1]− Pr[Exp∗−0

OSBE,A(k) = 1]

Adv∗OSBE(k, t) = max
A≤t

Adv∗OSBE,A(k).

• Sign(vk,m): This oracle outputs a valid signature on m under the signing key sk associated to vk
(where the pair (vk, sk) has been outputted by the OSBEKeyGen algorithm);

• Sign∗(vk,m): This oracle first queries Sign(vk,m). It additionally stores the query m to the list
SM;

• Send(vk,m, P): This oracle emulates the sender with private input P , and thus may consist of
multiple interactions;

• Rec(vk,m, b): This oracle emulates the recipient either with a valid signature σ on m under the
verification key vk (obtained from the signing oracle Sign) if b = 0 (as the above R0), or with a
random string if b = 1 (as the above R1). This oracle is available when the signing key has been
generated by OSBEKeyGen only;

• Rec∗(vk,m, σ, b): This oracle does as above, with a valid signature σ provided by the adversary. If
b = 0, it emulates the recipient playing with σ; if b = 1, it emulates the recipient playing with a
random string;

• Exec(vk,m, P): This oracle outputs the transcript of an honest execution between a sender with
private input P and the recipient with a valid signature σ on m under the verification key vk

7.4 Oblivious Signature-Based Envelope 55

(obtained from the signing oracle Sign). It basically activates the Send(vk,m, P) and Rec(vk,m, 0)
oracles.

• Exec∗(vk,m, σ, P): This oracle outputs the transcript of an honest execution between a sender with
private input P and the recipient with a valid signature σ (provided by the adversary). It basically
activates the Send(vk,m, P) and Rec∗(vk,m, σ, 0) oracles.

Remark The OSBE schemes proposed in [LDB03] do not satisfy the semantic security w.r.t. the aut-
hority. This is obvious for the generic construction based on identity-based encryption which consists
in only one flow of communication (since a scheme that achieves the strong security notions requires at
least two flows). This is also true (to a lesser extent) for the RSA-based construction: for any third
party, the semantic security relies (in the random oracle model) on the CDH assumption in a 2048-bit
RSA group; but for the authority, it can be broken by solving two 1024-bit discrete logarithm problems.
This task is much simpler in particular if the authority generates the RSA modulus N = pq dishonestly
(e.g. with p− 1 and q − 1 smooth). In order to make the scheme secure in our strong model, one needs
(at least) to double the size of the RSA modulus and to make sure that the authority has selected and
correctly employed a truly random seed in the generation of the RSA key pair [JG02].

7.4.1 High-Level Instantiation

We assume we have an encryption scheme E , a signature scheme S and an SPHF system onto a set G.
We additionally use a key derivation function KDF to derive a pseudo-random bit-string K ∈ {0, 1}` from
a pseudo-random element v in G. One can use the Leftover-Hash Lemma [HILL99], with a random seed
defined in param during the global setup, to extract the entropy from v, then followed by a pseudo-random
generator to get a long enough bit-string. Many uses of the same seed in the Leftover-Hash-Lemma just
leads to a security loss linear in the number of extractions. We describe an oblivious signature-based
envelope system OSBE , to send a private message P ∈ {0, 1}`:
• OSBESetup(1k), where k is the security parameter:

– it first generates the global parameters for the signature scheme , the encryption scheme, and
the SPHF system (using Setup);

– it then generates the public key ek of the encryption scheme (using KeyGenE , while the de-
cryption key will not be used);

The output param consists of all the individual param and the encryption key ek;
• OSBEKeyGen(param) runs KeyGenS(param) to generate a pair (vk, sk) of verification-signing keys;
• The OSBESign and OSBEVerif algorithms are exactly Sign and Verif from the signature scheme;
• OSBEProtocol〈S(vk,M, P),R(vk,M, σ)〉: In the following, L = L (vk,M) will describe the lan-

guage of the ciphertexts under the above encryption key ek of a valid signature of the input message
M under the input verification key vk (hence vk and M as inputs, while param contains ek).

– R generates and sends c = Encrypt(ek, σ; r);
– S computes hk = HashKG(L , param), hp = ProjKG(hk, (L , param), c), v = Hash(hk, (L , param), c),

and Q = P ⊕ KDF(v); S sends hp, Q to R;
– R computes v′ = ProjHash(hp, (L , param), c, r) and P ′ = Q⊕ KDF(v′).

One can do much more under this global framework. We can handle priced / conditional oblivious
transfer, where we (obliviously) checked if the user is allowed to access a line because his credentials are
valid or if its bank account has enough money.

One can also consider it, to design universal designated verifier signature like we did in [BCGJ17],
where the verified learns whether someone signed a message but is then unable to prove it to someone
else.

The same way, one can formalize Blind Signatures in this framework [BPV12], where the Ser-
ver/Signer allows to sign the message if and only if the user is able to prove that the value he committed
in the first flow is indeed belonging to the set of valid messages.8

?

8In fact, the construction we used to build the blind IBE Key Retrieval is a blind signature

Conclusion

While working on concrete protocols and their UC instantiation, we managed to formalize two big
families of constructions, and generic constructions associated with them. This allowed us then to focus
on improving the inner building blocks obtaining very efficient protocols while doing so.

In this section, we are now going to recall the main results, we obtained and more importantly (part
of) what remains to be done.

At the core of our protocols, we rely on Smooth Projective Hash Functions. In the past years, we
manage to tackle several challenges, like building KV-SPHF for CCA-2 encryption, providing SPHF for
post-quantum hypotheses, or even building SPHF for non-membership statement. We also extended
existing constructions to allow the use of a group element as a witness.

This very last result has already allowed us to build compact schemes, but one could still explore
what is available now that we can combine NIZK and SPHF, because this now introduce some flexibility
that Smoothness was preventing. For example, one can try to apply this to the recent NIKE result
from [HHK18] based on Hash Proofs.

Languages Another direction, that might be really interesting to study, is to further precise the
border of things manageable with an SPHF, we know we can not handle all NP, but we can handle affine
languages, techniques on lattices/codes highlight that we can handle neighborhood of affine languages,
and our result also show that we can handle compliment. Can we do more?

An intermediate result would also be to see, what languages can be handled by KV SPHF, it seems
unlikely that all languages manageable with an SPHF can be KV, but where should we stop.

A last challenge would be to obtain a full collection on post-quantum candidates, and manage to
design an SPHF around the SIDH problem.

QA-NIZK As of now, UC protocols seem to be more efficient when instantiated with QA-NIZK.
As SPHF seem to require less powerful cryptographic techniques, it would seem likely that this is not
credible, either we should be instantiate protocol that can not be handled via QA-NIZK, or for a given
thing, we should have a more efficient SPHF.

This is somewhat already the case, as we can avoid using pairings on elliptic curves, but there is still
something there.

In all likelihood, this is going to arrive via simultaneous evaluation. For now, when we build a
PAKE (for example), each user checks that the other’s password is what they expect, and proves that
its password is valid. One might expect to build multi-SPHF, where both users work together to prove
the password is equal mutualizing the overhead caused by the SPHF.

Distrusting the world Every scheme we propose relies on setup assumptions, perfect randomness,
and so on. One important lines of research would be to see what would happen in real life? What happens
if the CRS is corrupted? We have impossibility results on PAKE and Angel-based cryptography, but
what happens if just a part of the CRS should be distrusted? Or now, if we assume we have a proper,
proper standards, what happens if during the hash key generation we have a diminished entropy?

56

Bibliography

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David Point-
cheval. SPHF-friendly non-interactive commitments. In Kazue Sako and Palash Sarkar,
editors, Advances in Cryptology – ASIACRYPT 2013, Part I, volume 8269 of Lecture No-
tes in Computer Science, pages 214–234, Bengalore, India, December 1–5, 2013. Springer,
Heidelberg, Germany. 4, 28, 29, 36, 37, 38, 45, 46, 47

[ABCG15] Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Gaborit. A Code-Based
Group Signature Scheme. In Jean-Pierre Tillich Pascale Charpin, Nicolas Sendrier, editor,
The 9th International Workshop on Coding and Cryptography 2015 WCC2015, Proceedings
of the 9th International Workshop on Coding and Cryptography 2015 WCC2015, Paris,
France, April 2015. 4

[ABCG16] Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Gaborit. A practical
group signature scheme based on rank metric. In Sylvain Duquesne and Svetla Petkova-
Nikova, editors, Arithmetic of Finite Fields - 6th International Workshop, WAIFI 2016,
Ghent, Belgium, July 13-15, 2016, Revised Selected Papers, volume 10064 of Lecture Notes
in Computer Science, pages 258–275. Springer, Heidelberg, Germany, July 2016. 4

[ABCG17] Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Gaborit. A code-based
group signature scheme. Designs, Codes and Cryptography, 82:1–25, 2017. 1, 4

[ACFP05] Michel Abdalla, Olivier Chevassut, Pierre-Alain Fouque, and David Pointcheval. A simple
threshold authenticated key exchange from short secrets. In Bimal K. Roy, editor, Advances
in Cryptology – ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer Science,
pages 566–584, Chennai, India, December 4–8, 2005. Springer, Heidelberg, Germany. 39,
40

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for
conditionally extractable commitments. In Shai Halevi, editor, Advances in Cryptology –
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 671–689, Santa
Barbara, CA, USA, August 16–20, 2009. Springer, Heidelberg, Germany. 13, 14, 27, 28,
29, 33, 34, 35, 36, 38

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In Tal
Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 209–236, Santa Barbara, CA, USA, August 15–19, 2010. Springer,
Heidelberg, Germany. 20

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 119–135, Innsbruck, Austria,
May 6–10, 2001. Springer, Heidelberg, Germany. 2

[AKB07] Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret handshakes with dynamic
and fuzzy matching. In ISOC Network and Distributed System Security Symposium –
NDSS 2007, San Diego, CA, USA, February 28 – March 2, 2007. The Internet Society. 1,
42

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th Annual
Symposium on Foundations of Computer Science, pages 298–307, Cambridge, MA, USA,
October 11–14, 2003. IEEE Computer Society Press. 3

57

58 BIBLIOGRAPHY 7.4

[AMBD+18] Carlos Aguilar Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and
Gilles Zémor. Efficient encryption from random quasi-cyclic codes. IEEE Trans. Informa-
tion Theory, 64(5):3927–3943, 2018. 1, 3, 4, 24

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441
of Lecture Notes in Computer Science, pages 557–577, Copenhagen, Denmark, May 11–15,
2014. Springer, Heidelberg, Germany. 2

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. Efficient UC-secure authenticated key-exchange for algebraic languages. In
Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013: 16th International Conference
on Theory and Practice of Public Key Cryptography, volume 7778 of Lecture Notes in
Computer Science, pages 272–291, Nara, Japan, February 26 – March 1, 2013. Springer,
Heidelberg, Germany. 4, 19, 28, 33, 35

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Verg-
naud. New techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume
8042 of Lecture Notes in Computer Science, pages 449–475, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany. 2, 14, 15, 33, 36, 37, 38

[BBDQ18] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. Hash proof systems
over lattices revisited. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st
International Conference on Theory and Practice of Public Key Cryptography, Part II,
volume 10770 of Lecture Notes in Computer Science, pages 644–674, Rio de Janeiro, Brazil,
March 25–29, 2018. Springer, Heidelberg, Germany. 4, 21

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes
in Computer Science, pages 41–55, Santa Barbara, CA, USA, August 15–19, 2004. Springer,
Heidelberg, Germany. 30

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of UC-secure oblivious transfer.
In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis,
editors, ACNS 15: 13th International Conference on Applied Cryptography and Network
Security, volume 9092 of Lecture Notes in Computer Science, pages 65–86, New York, NY,
USA, June 2–5, 2015. Springer, Heidelberg, Germany. 4, 28, 29, 45, 46, 47

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective hashing.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIA-
CRYPT 2016, Part II, volume 10032 of Lecture Notes in Computer Science, pages 339–369,
Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany. 3, 18, 20, 21, 31,
37, 38, 45, 46, 47

[BCG16] Olivier Blazy, Céline Chevalier, and Paul Germouty. Adaptive oblivious transfer and ge-
neralization. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, Part II, volume 10032 of Lecture Notes in Computer Science, pages
217–247, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany. 2, 3, 43,
51, 52

[BCG17] Olivier Blazy, Céline Chevalier, and Paul Germouty. Almost optimal oblivious transfer
from QA-NIZK. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS
17: 15th International Conference on Applied Cryptography and Network Security, volume
10355 of Lecture Notes in Computer Science, pages 579–598, Kanazawa, Japan, July 10–12,
2017. Springer, Heidelberg, Germany. 4, 45, 46, 47

[BCGJ17] Olivier Blazy, Emmanuel Conchon, Paul Germouty, and Amandine Jambert. Efficient id-
based designated verifier signature. In Proceedings of the 12th International Conference
on Availability, Reliability and Security, Reggio Calabria, Italy, August 29 - September 01,
2017, pages 44:1–44:8. ACM, 2017. 55

7.4 BIBLIOGRAPHY 59

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation
without authentication. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 361–377, Santa Barbara, CA,
USA, August 14–18, 2005. Springer, Heidelberg, Germany. 35, 36

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and
improvement of Lindell’s UC-secure commitment schemes. In Michael J. Jacobson Jr.,
Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13: 11th
International Conference on Applied Cryptography and Network Security, volume 7954 of
Lecture Notes in Computer Science, pages 534–551, Banff, AB, Canada, June 25–28, 2013.
Springer, Heidelberg, Germany. 4, 27

[BCV15] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Non-interactive zero-knowledge
proofs of non-membership. In Kaisa Nyberg, editor, Topics in Cryptology – CT-RSA 2015,
volume 9048 of Lecture Notes in Computer Science, pages 145–164, San Francisco, CA,
USA, April 20–24, 2015. Springer, Heidelberg, Germany. 17, 25

[BCV16] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Mitigating server breaches in
password-based authentication: Secure and efficient solutions. In Kazue Sako, editor, To-
pics in Cryptology – CT-RSA 2016, volume 9610 of Lecture Notes in Computer Science,
pages 3–18, San Francisco, CA, USA, February 29 – March 4, 2016. Springer, Heidelberg,
Germany. 38

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Staddon, and
Hao-Chi Wong. Secret handshakes from pairing-based key agreements. In IEEE Symposium
on Security and Privacy, pages 180–196. IEEE Computer Society, 2003. 1, 33, 42

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Heidelberg, Germany. 49

[BFI+10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and
Damien Vergnaud. Batch Groth-Sahai. In Jianying Zhou and Moti Yung, editors, ACNS
10: 8th International Conference on Applied Cryptography and Network Security, volume
6123 of Lecture Notes in Computer Science, pages 218–235, Beijing, China, June 22–25,
2010. Springer, Heidelberg, Germany. 1

[BFPV10] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on
randomizable ciphertexts. In Rosario Gennaro, editor, Proceedings of PKC 2011, Lecture
Notes in Computer Science. Springer, 2010. Full version available from the web page of the
authors. 49

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of
Lecture Notes in Computer Science, pages 325–341, Cambridge, MA, USA, February 10–12,
2005. Springer, Heidelberg, Germany. 2

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12: 19th Conference on
Computer and Communications Security, pages 784–796, Raleigh, NC, USA, October 16–
18, 2012. ACM Press. 2

[BJKS03] John G. Brainard, Ari Juels, Burt Kaliski, and Michael Szydlo. A new two-server appro-
ach for authentication with short secrets. In Proceedings of the 12th USENIX Security
Symposium, Washington, D.C., USA, August 4-8, 2003, 2003. 39

[BKKP15] Olivier Blazy, Saqib A. Kakvi, Eike Kiltz, and Jiaxin Pan. Tightly-secure signatures from
chameleon hash functions. In Jonathan Katz, editor, PKC 2015: 18th International Con-
ference on Theory and Practice of Public Key Cryptography, volume 9020 of Lecture Notes
in Computer Science, pages 256–279, Gaithersburg, MD, USA, March 30 – April 1, 2015.
Springer, Heidelberg, Germany. 1, 4

60 BIBLIOGRAPHY 7.4

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based encryption from
affine message authentication. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 408–425, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Ger-
many. 1, 3, 4, 48, 50, 51

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy,
pages 72–84. IEEE Computer Society Press, May 1992. 1, 33, 36

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, Advances in Cryptology – EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155, Bruges,
Belgium, May 14–18, 2000. Springer, Heidelberg, Germany. 38, 40

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving
protocols with smooth projective hash functions. In Ronald Cramer, editor, TCC 2012: 9th
Theory of Cryptography Conference, volume 7194 of Lecture Notes in Computer Science,
pages 94–111, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Heidelberg, Germany.
49, 55

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In
Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of
Lecture Notes in Computer Science, pages 427–444, St. Petersburg, Russia, May 28 – June 1,
2006. Springer, Heidelberg, Germany. 1

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In 42nd Annual Symposium on Foundations of Computer Science, pages 136–145, Las
Vegas, NV, USA, October 14–17, 2001. IEEE Computer Society Press. 8, 9, 36, 39

[CCGS10] Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential authen-
ticated identification and key exchange. In Tal Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 255–276, Santa
Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. 2, 33

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable
security for standard multiparty computation. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 3–22, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany. 9

[CDH12] Jan Camenisch, Maria Dubovitskaya, and Kristiyan Haralambiev. Efficient structure-
preserving signature scheme from standard assumptions. In Ivan Visconti and Roberto De
Prisco, editors, SCN 12: 8th International Conference on Security in Communication Net-
works, volume 7485 of Lecture Notes in Computer Science, pages 76–94, Amalfi, Italy,
September 5–7, 2012. Springer, Heidelberg, Germany. 47

[CDN09] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious transfer with access
control. In Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS
09: 16th Conference on Computer and Communications Security, pages 131–140, Chicago,
Illinois, USA, November 9–13, 2009. ACM Press. 2

[CDNZ11] Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha. Oblivi-
ous transfer with hidden access control policies. In Dario Catalano, Nelly Fazio, Rosario
Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th International Conference on The-
ory and Practice of Public Key Cryptography, volume 6571 of Lecture Notes in Computer
Science, pages 192–209, Taormina, Italy, March 6–9, 2011. Springer, Heidelberg, Germany.
2

[CEN15] Jan Camenisch, Robert R. Enderlein, and Gregory Neven. Two-server password-
authenticated secret sharing UC-secure against transient corruptions. In Jonathan Katz,
editor, PKC 2015: 18th International Conference on Theory and Practice of Public Key

7.4 BIBLIOGRAPHY 61

Cryptography, volume 9020 of Lecture Notes in Computer Science, pages 283–307, Gait-
hersburg, MD, USA, March 30 – April 1, 2015. Springer, Heidelberg, Germany. 39

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 19–40, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg,
Germany. 27, 36

[CFH+07] Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and Rui Zhang. Formal security
treatments for signatures from identity-based encryption. In Willy Susilo, Joseph K. Liu,
and Yi Mu, editors, ProvSec 2007: 1st International Conference on Provable Security,
volume 4784 of Lecture Notes in Computer Science, pages 218–227, Wollongong, Australia,
November 1–2, 2007. Springer, Heidelberg, Germany. 49

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In 36th Annual Symposium on Foundations of Computer Science, pages 41–50,
Milwaukee, Wisconsin, October 23–25, 1995. IEEE Computer Society Press. 2

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Uni-
versally composable password-based key exchange. In Ronald Cramer, editor, Advances
in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 404–421, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany. 34,
35, 36

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and se-
cure channels. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 337–351, Amsterdam, The Net-
herlands, April 28 – May 2, 2002. Springer, Heidelberg, Germany. 36

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively
secure, and composable oblivious transfer with a single, global CRS. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013: 16th International Conference on Theory and
Practice of Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science,
pages 73–88, Nara, Japan, February 26 – March 1, 2013. Springer, Heidelberg, Germany.
47

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th Annual ACM Symposium on Theory
of Computing, pages 494–503, Montréal, Québec, Canada, May 19–21, 2002. ACM Press.
27

[CNs07] Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive oblivious transfer. In
Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume 4515 of Lecture
Notes in Computer Science, pages 573–590, Barcelona, Spain, May 20–24, 2007. Springer,
Heidelberg, Germany. 47

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryp-
tology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25,
Santa Barbara, CA, USA, August 23–27, 1998. Springer, Heidelberg, Germany. 33

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, Advances in
Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,
pages 45–64, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg,
Germany. 13, 15

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 126–144, Santa Barbara, CA, USA, August 17–
21, 2003. Springer, Heidelberg, Germany. 27

62 BIBLIOGRAPHY 7.4

[DG03] Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-
authenticated key exchange. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 507–523, Warsaw,
Poland, May 4–8, 2003. Springer, Heidelberg, Germany. 39

[DG06] Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-
authenticated key exchange. J. Comput. Syst. Sci., 72(6):978–1001, 2006. 39

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman as-
sumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 537–569,
Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. 4

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transacti-
ons on Information Theory, 22(6):644–654, 1976. 10

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In Moti Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 581–596, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Heidel-
berg, Germany. 27

[DOR99] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Conditional
oblivious transfer and timed-release encryption. In Jacques Stern, editor, Advances in
Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages
74–89, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg, Germany. 2

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Com-
puter Science, pages 129–147, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany. 18, 30

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of
Lecture Notes in Computer Science, pages 60–77, Santa Barbara, CA, USA, August 20–24,
2006. Springer, Heidelberg, Germany. 49

[FK00] Warwick Ford and Burton S. Kaliski Jr. Server-assisted generation of a strong secret from a
password. In 9th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE 2000), 4-16 June 2000, Gaithersburg, MD, USA,
pages 176–180, 2000. 38, 39

[FLM11] Marc Fischlin, Benôıt Libert, and Mark Manulis. Non-interactive and re-usable universally
composable string commitments with adaptive security. In Dong Hoon Lee and Xiaoyun
Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes
in Computer Science, pages 468–485, Seoul, South Korea, December 4–8, 2011. Springer,
Heidelberg, Germany. 3, 27, 29, 30, 38

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable constant-size
fair e-cash. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS 09: 8th
International Conference on Cryptology and Network Security, volume 5888 of Lecture Notes
in Computer Science, pages 226–247, Kanazawa, Japan, December 12–14, 2009. Springer,
Heidelberg, Germany. 1

[GD14] Vandana Guleria and Ratna Dutta. Lightweight universally composable adaptive oblivious
transfer. In ManHo Au, Barbara Carminati, and C.-C.Jay Kuo, editors, Network and Sy-
stem Security, volume 8792 of Lecture Notes in Computer Science, pages 285–298. Springer
International Publishing, 2014. 47

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual
ACM Symposium on Theory of Computing, pages 467–476, Palo Alto, CA, USA, June 1–4,
2013. ACM Press. 17

7.4 BIBLIOGRAPHY 63

[GH07] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simula-
table oblivious transfer. In Kaoru Kurosawa, editor, Advances in Cryptology – ASIA-
CRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 265–282, Kuching,
Malaysia, December 2–6, 2007. Springer, Heidelberg, Germany. 47, 48

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy
in private information retrieval schemes. In 30th Annual ACM Symposium on Theory of
Computing, pages 151–160, Dallas, TX, USA, May 23–26, 1998. ACM Press. 2

[GKW15] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditi-
onal disclosure of secrets and attribute-based encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of
Lecture Notes in Computer Science, pages 485–502, Santa Barbara, CA, USA, August 16–
20, 2015. Springer, Heidelberg, Germany. 2

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key
exchange. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 524–543, Warsaw, Poland, May 4–8,
2003. Springer, Heidelberg, Germany. http://eprint.iacr.org/2003/032.ps.gz. 13,
14, 36, 39

[GL06] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key
exchange. ACM Transactions on Information and System Security, 9(2):181–234, 2006. 33

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984. 9

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
April 1988. 10

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inte-
ractive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. 1

[GOS18] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled RAM from
laconic oblivious transfer. In Hovav Shacham and Alexandra Boldyreva, editors, Advan-
ces in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer
Science, pages 515–544, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidel-
berg, Germany. 2

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru Kuro-
sawa, editor, Advances in Cryptology – ASIACRYPT 2007, volume 4833 of Lecture Notes
in Computer Science, pages 164–180, Kuching, Malaysia, December 2–6, 2007. Springer,
Heidelberg, Germany. 1

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of
Lecture Notes in Computer Science, pages 415–432, Istanbul, Turkey, April 13–17, 2008.
Springer, Heidelberg, Germany. 19

[GWZ09] Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing encryp-
tion and efficient adaptively secure oblivious transfer. In Shai Halevi, editor, Advances in
Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
505–523, Santa Barbara, CA, USA, August 16–20, 2009. Springer, Heidelberg, Germany.
47

[Har11] Kristiyan Haralambiev. Efficient Cryptographic Primitives for Non-Interactive Zero-
Knowledge Proofs and Applications. PhD thesis, New York University, 2011. 27, 28

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th
Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer
Science, pages 341–371, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg,
Germany. 24

http://eprint.iacr.org/2003/032.ps.gz

64 BIBLIOGRAPHY 7.4

[HHK18] Julia Hesse, Dennis Hofheinz, and Lisa Kohl. On tightly secure non-interactive key ex-
change. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science, pages 65–94,
Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. 56

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
45, 49, 55

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret
sharing or: How to cope with perpetual leakage. In Don Coppersmith, editor, Advan-
ces in Cryptology – CRYPTO’95, volume 963 of Lecture Notes in Computer Science, pages
339–352, Santa Barbara, CA, USA, August 27–31, 1995. Springer, Heidelberg, Germany.
40

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. Journal of Cryptology, 25(1):158–193, January 2012. 33

[HMQ04] Dennis Hofheinz and Jörn Müller-Quade. Universally composable commitments using
random oracles. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Confe-
rence, volume 2951 of Lecture Notes in Computer Science, pages 58–76, Cambridge, MA,
USA, February 19–21, 2004. Springer, Heidelberg, Germany. 30

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In Javier
Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, ICALP 2014:
41st International Colloquium on Automata, Languages and Programming, Part I, volume
8572 of Lecture Notes in Computer Science, pages 650–662, Copenhagen, Denmark, July 8–
11, 2014. Springer, Heidelberg, Germany. 2

[Jab01] David P. Jablon. Password authentication using multiple servers. In David Naccache,
editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer
Science, pages 344–360, San Francisco, CA, USA, April 8–12, 2001. Springer, Heidelberg,
Germany. 39

[JG02] Ari Juels and Jorge Guajardo. RSA key generation with verifiable randomness. In David
Naccache and Pascal Paillier, editors, PKC 2002: 5th International Workshop on The-
ory and Practice in Public Key Cryptography, volume 2274 of Lecture Notes in Computer
Science, pages 357–374, Paris, France, February 12–14, 2002. Springer, Heidelberg, Ger-
many. 55

[JL09a] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with ap-
plications to adaptive OT and secure computation of set intersection. In Omer Reingold,
editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture Notes
in Computer Science, pages 577–594. Springer, Heidelberg, Germany, March 15–17, 2009.
47

[JL09b] Stanislaw Jarecki and Xiaomin Liu. Private mutual authentication and conditional oblivious
transfer. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of
Lecture Notes in Computer Science, pages 90–107, Santa Barbara, CA, USA, August 16–20,
2009. Springer, Heidelberg, Germany. 1, 42

[JR12] Charanjit S. Jutla and Arnab Roy. Relatively-sound NIZKs and password-based key-
exchange. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012:
15th International Conference on Theory and Practice of Public Key Cryptography, vo-
lume 7293 of Lecture Notes in Computer Science, pages 485–503, Darmstadt, Germany,
May 21–23, 2012. Springer, Heidelberg, Germany. 33

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces.
In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013,
Part I, volume 8269 of Lecture Notes in Computer Science, pages 1–20, Bengalore, India,
December 1–5, 2013. Springer, Heidelberg, Germany. 1

7.4 BIBLIOGRAPHY 65

[JR15] Charanjit S. Jutla and Arnab Roy. Dual-system simulation-soundness with applications to
UC-PAKE and more. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology
– ASIACRYPT 2015, Part I, volume 9452 of Lecture Notes in Computer Science, pages
630–655, Auckland, New Zealand, November 30 – December 3, 2015. Springer, Heidelberg,
Germany. 3, 36, 38, 47

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 78–95, Aarhus, Denmark, May 22–26, 2005.
Springer, Heidelberg, Germany. 13, 33

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM Symposium
on Theory of Computing, pages 20–31, Chicago, IL, USA, May 2–4, 1988. ACM Press. 2

[KM14] Franziskus Kiefer and Mark Manulis. Distributed smooth projective hashing and its ap-
plication to two-server password authenticated key exchange. In Ioana Boureanu, Philippe
Owesarski, and Serge Vaudenay, editors, ACNS 14: 12th International Conference on App-
lied Cryptography and Network Security, volume 8479 of Lecture Notes in Computer Science,
pages 199–216, Lausanne, Switzerland, June 10–13, 2014. Springer, Heidelberg, Germany.
39

[KMTG05] Jonathan Katz, Philip D. MacKenzie, Gelareh Taban, and Virgil D. Gligor. Two-server
password-only authenticated key exchange. In John Ioannidis, Angelos Keromytis, and
Moti Yung, editors, ACNS 05: 3rd International Conference on Applied Cryptography and
Network Security, volume 3531 of Lecture Notes in Computer Science, pages 1–16, New
York, NY, USA, June 7–10, 2005. Springer, Heidelberg, Germany. 39

[KMTG12] Jonathan Katz, Philip D. MacKenzie, Gelareh Taban, and Virgil D. Gligor. Two-server
password-only authenticated key exchange. J. Comput. Syst. Sci., 78(2):651–669, 2012. 39,
40

[KNP11] Kaoru Kurosawa, Ryo Nojima, and Le Trieu Phong. Generic fully simulatable adaptive
oblivious transfer. In Javier Lopez and Gene Tsudik, editors, ACNS 11: 9th International
Conference on Applied Cryptography and Network Security, volume 6715 of Lecture Notes
in Computer Science, pages 274–291, Nerja, Spain, June 7–10, 2011. Springer, Heidelberg,
Germany. 47

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key
exchange using human-memorable passwords. In Birgit Pfitzmann, editor, Advances in
Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science,
pages 475–494, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany. 36, 39

[KPW15] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. Structure-preserving signatures from standard
assumptions, revisited. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advan-
ces in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 275–295, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidel-
berg, Germany. 20

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-
based authenticated key exchange from lattices. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages
636–652, Tokyo, Japan, December 6–10, 2009. Springer, Heidelberg, Germany. 4, 21, 22

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated
key exchange. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference,
volume 6597 of Lecture Notes in Computer Science, pages 293–310, Providence, RI, USA,
March 28–30, 2011. Springer, Heidelberg, Germany. 2, 15, 21, 33, 36, 38

[KZ09] Aggelos Kiayias and Hong-Sheng Zhou. Zero-knowledge proofs with witness elimination.
In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009: 12th International Conference
on Theory and Practice of Public Key Cryptography, volume 5443 of Lecture Notes in Com-
puter Science, pages 124–138, Irvine, CA, USA, March 18–20, 2009. Springer, Heidelberg,
Germany. 25

66 BIBLIOGRAPHY 7.4

[LDB03] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope. In Elizabeth
Borowsky and Sergio Rajsbaum, editors, 22nd ACM Symposium Annual on Principles of
Distributed Computing, pages 182–189, Boston, MA, USA, July 13–16, 2003. Association
for Computing Machinery. 2, 53, 55

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH
assumption. In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 446–466, Tallinn, Estonia,
May 15–19, 2011. Springer, Heidelberg, Germany. 27

[LL07] Sven Laur and Helger Lipmaa. A new protocol for conditional disclosure of secrets and
its applications. In Jonathan Katz and Moti Yung, editors, ACNS 07: 5th International
Conference on Applied Cryptography and Network Security, volume 4521 of Lecture Notes
in Computer Science, pages 207–225, Zhuhai, China, June 5–8, 2007. Springer, Heidelberg,
Germany. 2

[MSJ02] Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold password-
authenticated key exchange. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 385–400, Santa
Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany. 39

[NP97] Moni Naor and Benny Pinkas. Visual authentication and identification. In Burton S.
Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in
Computer Science, pages 322–336, Santa Barbara, CA, USA, August 17–21, 1997. Springer,
Heidelberg, Germany. 47

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen cip-
hertext attacks. In 22nd Annual ACM Symposium on Theory of Computing, pages 427–437,
Baltimore, MD, USA, May 14–16, 1990. ACM Press. 9, 15

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended ab-
stract). In Luigi Logrippo, editor, 10th ACM Symposium Annual on Principles of Distribu-
ted Computing, pages 51–59, Montreal, Quebec, Canada, August 19–21, 1991. Association
for Computing Machinery. 40

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, Advances in Cryptology –
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 554–571, Santa
Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany. 47

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report
TR81, Harvard University, 1981. 2, 43, 45

[RKP09] Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally composable adaptive priced
oblivious transfer. In Hovav Shacham and Brent Waters, editors, PAIRING 2009: 3rd
International Conference on Pairing-based Cryptography, volume 5671 of Lecture Notes in
Computer Science, pages 231–247, Palo Alto, CA, USA, August 12–14, 2009. Springer,
Heidelberg, Germany. 2, 47

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of know-
ledge and chosen ciphertext attack. In Joan Feigenbaum, editor, Advances in Cryptology
– CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages 433–444, Santa
Barbara, CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany. 9

[SK05] Michael Szydlo and Burton S. Kaliski Jr. Proofs for two-server password authentication.
In Alfred Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of Lecture
Notes in Computer Science, pages 227–244, San Francisco, CA, USA, February 14–18, 2005.
Springer, Heidelberg, Germany. 39

[SPMLS02] Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart. Flaws in applying
proof methodologies to signature schemes. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 93–110, Santa
Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany. 10

7.4 BIBLIOGRAPHY 67

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science, pages 114–127, Aarhus, Denmark, May 22–26, 2005. Springer,
Heidelberg, Germany. 52

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell, editor,
TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture Notes in
Computer Science, pages 616–637, San Diego, CA, USA, February 24–26, 2014. Springer,
Heidelberg, Germany. 2

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi. SCORAM:
Oblivious RAM for secure computation. In Gail-Joon Ahn, Moti Yung, and Ninghui Li,
editors, ACM CCS 14: 21st Conference on Computer and Communications Security, pages
191–202, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press. 2

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).
In 23rd Annual Symposium on Foundations of Computer Science, pages 80–91, Chicago,
Illinois, November 3–5, 1982. IEEE Computer Society Press. 8

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario,
Canada, October 27–29, 1986. IEEE Computer Society Press. 2

[ZY17] Jiang Zhang and Yu Yu. Two-round PAKE from approximate SPH and instantiations
from lattices. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part III, volume 10626 of Lecture Notes in Computer Science, pages
37–67, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany. 21

Résumé

Dans ce manuscrit, nous revenons sur diverses briques utilisées dans le contexte de la cryp-
tographie implicite. Tout d’abord nous nous concentrons sur les Smooth Projective Hash
Functions (Fonctions de hachage à projections régulières), nous montrons comment les classi-
fier, comment en construire et comment repousser les limites des langages pouvant être gêrés.
Pour celà, nous les étudions tout d’abord sous l’angle classique des courbes elliptiques mais
également des réseaux euclidiens, ou même de la cryptographie à base de codes.
Ensuite nous proposons de nouvelles méthodologies pour construire et prouver des protocoles
d’échanges de clé authentifiés (que nous regroupons derrière le concept de LAKE : Language
Based Authenticated Key Exchange, Echange de clé authentifié par un langage), et des proto-
coles asymétriques (regroupés sous le concept d’OLBE : Oblivious Language-Based Envelope,
Enveloppe Inconsciente basée sur un langage). A chaque fois, nous fournissions des fonctionna-
lités idéales, des instantiations génériques et montrons comment instantier les diverses briques
pour générer des protocoles sûrs et le plus efficaces possibles. Bien que développées de façon
générique, nous remarquons que nos instantiations conduisent à des protocoles extrêmement
efficaces même en cas de corruptions adaptatives, et que ces constructions se transposent
presque naturellement aux hypothèses post-quantiques.

Abstract

In this manuscript, we consider various building blocks used in the context of implicit crypto-
graphy. First, we focus on Smooth Projective Hash Functions, we show how to classify them
properly, how to build them, and how to widen the array of languages that can be considered.
For that we first start with vanilla cryptography by considering elliptic curves, and then further
proceed to post-quantum solutions like euclidean lattices, and code-based cryptography.
Then, we proposed new methodologies to build and prove the security of authenticated key
exchanges protocols (we encompass all of them through the notion of LAKE: Language Based
Authenticated Key Exchange), and more asymmetric protocols (that we encompass with the
notion of OLBE: Oblivious Language-Based Envelope). Each time, we provide specific ideal
functionalities, and generic instantiation, and show how to instantiate the various building
blocks to achieve efficient and secure protocols. Even if the construction are generic, the
protocols remain efficient even in case of adaptive corruptions. Interestingly, due to the generic
design, everything can be easily transposed to post-quantum hypotheses.

	Introduction
	Symmetric Primitives
	Asymmetric Primitives
	Contributions
	Summary of other results
	List of Publications

	Technical Introduction
	Universal Composability
	Simple UC Framework.

	Standard Cryptographic Primitives
	Encryption
	Digital Signature

	I Building Hash proof System
	Hash Proof Definition
	Definition
	Various Subtypes
	GL-SPHF
	CS-SPHF
	KV-SPHF

	Languages and Underlying Hypotheses
	Side Result: SPHF for an encryption of a solution of an NP problem
	Elliptic Curves
	Reminder on Matrix Notation
	Languages à la Groth Sahai
	Structure Preserving Smooth Projective Hash Function

	Euclidean Lattices
	First solution (Universality, Approximate Correctness).
	Second solution (Imperfect Universality, Statistical Correctness).
	Mind the Gap

	And more
	A Code-Based Encryption: RQC
	The associated Hash Proof

	Expanding Languages

	SPHF Friendly Commitment
	Commitments.
	Generic Commitment à la Haralambiev
	Building Blocks.
	Generic Construction.

	Revisited FLM Commitment
	k-MDDH Cramer-Shoup Encryption
	A Universally Composable Commitment with Adaptive Security Based on MDDH
	Associated Structure-Preserving Smooth Projective Hash Function

	II Using HPS in Constructions
	Symmetric Constructions (LAKE)
	Language Authenticated Key Exchange
	The Ideal Functionality
	Generic Construction

	Password-Authenticated Key Exchange
	Ideal Functionality
	High Level Construction

	Verifier-based PAKE
	DPAKE
	Constructions
	Simple Protocol
	Login procedure
	Efficient Version

	Secret Handshake

	Asymmetric Constructions (OLBE)
	OLBE
	Security Properties and Ideal Functionality of OLBE
	Generic UC-Secure Instantiation of OLBE with Adaptive Security

	Oblivious Transfer
	Adaptive Oblivious Transfer
	Transformation
	Constructing a Blind Fragmented IBKEM from an IBKEM
	Generic Construction of Adaptive OT
	Pairing-Based Instantiation of Adaptive OT

	Oblivious Signature-Based Envelope
	High-Level Instantiation

