

RUHR-UNIVERSITÄT BOCHUM Round-optimal Signature, developing new tools to improve efficiency . 2013

O. Blazy Horst Görtz Institute for IT Security / Ruhr-University Bochumort Cortz Institut

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

1 General Remarks

2 Building blocks

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

- 2 Building blocks
- 3 Non-Interactive Proofs of Knowledge

- 2 Building blocks
- 3 Non-Interactive Proofs of Knowledge
- 4 Interactive Implicit Proofs

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

RUB

Proof of Knowledge

<u> </u>	<	
	· · · · · · · · · · · · · · · · · · ·	
	·	
- m -		

Alice

Bob

- $_{\S}$ interactive method for one party to prove to another the knowledge of a secret $\mathcal{S}.$
- 1. Completeness: ${\mathcal S}$ is true \rightsquigarrow verifier will be convinced of this fact
- 2. Soundness: ${\cal S}$ is false \rightsquigarrow no cheating prover can convince the verifier that ${\cal S}$ is true

Classical Instantiations : Schnorr proofs, Sigma Protocols ... Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013 RUHR-UNIVERSITÄT BOCHUM

Zero-Knowledge Proof Systems

§ Introduced in 1985 by Goldwasser, Micali and Rackoff.

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

Zero-Knowledge Proof Systems

 $_{\S}$ Introduced in 1985 by Goldwasser, Micali and Rackoff.

 \rightsquigarrow Reveal nothing other than the validity of assertion being proven

Zero-Knowledge Proof Systems

§ Introduced in 1985 by Goldwasser, Micali and Rackoff.

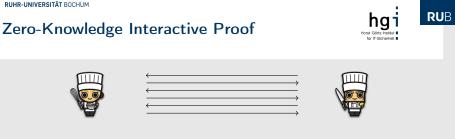
 \rightsquigarrow Reveal nothing other than the validity of assertion being proven

- § Used in many cryptographic protocols
 - Anonymous credentials
 - Anonymous signatures
 - Online voting

o ...



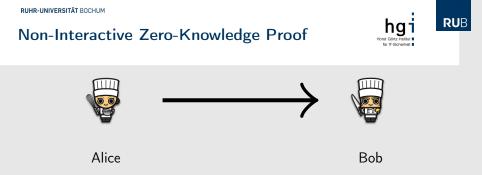
§ interactive method for one party to prove to another that a statement S is true, without revealing anything other than the veracity of S.



Alice

Bob

- § interactive method for one party to prove to another that a statement S is true, without revealing anything other than the veracity of S.
- 1. Completeness: if S is true, the honest verifier will be convinced of this fact
- 2. Soundness: if S is false, no cheating prover can convince the honest verifier that it is true
- Round-Optimal Signature Horst Cort in Stitute for M-security heating verifier learns anything 48



- $_{\$}$ non-interactive method for one party to prove to another that a statement ${\cal S}$ is true, without revealing anything other than the veracity of ${\cal S}.$
- 1. Completeness: ${\mathcal S}$ is true \rightsquigarrow verifier will be convinced of this fact
- 2. Soundness: S is false \rightsquigarrow no cheating prover can convince the verifier that S is true
- 3. Zero-knowledge: S is true \sim no cheating verifier learns anything Round-Optimal Signature that this fact Institute for IT-Security | 2013 6/48

History of NIZK Proofs

§ Blum-Feldman-Micali, 1988.

§ ...

§ De Santis-Di Crescenzo-Persiano, 2002.

History of NIZK Proofs

Inefficient NIZK

- § Blum-Feldman-Micali, 1988.
- § ...
- § De Santis-Di Crescenzo-Persiano, 2002.

Alternative: Fiat-Shamir heuristic, 1986: interactive ZK proof \rightsquigarrow NIZK But limited by the Random Oracle

History of NIZK Proofs

Inefficient NIZK

- § Blum-Feldman-Micali, 1988.
- § ...
- § De Santis-Di Crescenzo-Persiano, 2002.

Alternative: Fiat-Shamir heuristic, 1986: interactive ZK proof → NIZK But limited by the Random Oracle

Efficient NIZK

- § Groth-Ostrovsky-Sahai, 2006.
- § Groth-Sahai, 2008.

RUHR-UNIVERSITÄT BOCHUM

Applications of NIZK Proofs

- § Fancy signature schemes
 - group signatures
 - ring signatures
 - traceable signatures
- § Efficient non-interactive proof of correctness of shuffle
- § Non-interactive anonymous credentials
- § CCA-2-secure encryption schemes (with public verifiability)
- § Identification
- § E-voting, E-cash

§ ...

Soundness

§ Only people proving they know the expected secret should be able to access the information.

Zero-Knowledge

§ The authority should not learn said secret.

2 Building blocks

- Bilinear groups aka Pairing-friendly environments
- Commitment / Encryption
- Signatures
- Security hypotheses

3 Non-Interactive Proofs of Knowledge

4 Interactive Implicit Proofs

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

Symmetric bilinear structure

 $(p, \mathbb{G}, \mathbb{G}_T, e, g)$ bilinear structure:

§ G, G_T multiplicative groups of order p $\circ p = prime integer$

$$\begin{array}{l} \{ \langle g \rangle = \mathbb{G} \\ \{ e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{\mathcal{T}} \\ \circ \langle e(g,g) \rangle = \mathbb{G}_{\mathcal{T}} \\ \circ e(g^a,g^b) = e(g,g)^{ab}, \ a, b \in \mathbb{Z} \end{array}$$

deciding group membership, group operations, } efficiently computable. ξ bilinear map

Definition 1 (Encryption Scheme)

- $\mathcal{E} = (\mathsf{Setup}, \mathsf{EKeyGen}, \mathsf{Encrypt}, \mathsf{Decrypt})$:
 - § Setup (1^{\Re}) : param;
 - § EKeyGen(param): public encryption key pk, private decryption key dk;
 - § Encrypt(pk, m; r): ciphertext c on $m \in \mathcal{M}$ and pk;
 - § Decrypt(dk, c): decrypts c under dk.

Indistinguishability: Given M_0, M_1 , it should be hard to guess which one is encrypted in C.

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

Definition 2 (Linear Encryption)

- § Setup(1^{\Re}): Generates a multiplicative group (p, \mathbb{G} , g).
- § EKeyGen_{\mathcal{E}}(param): dk = $(\mu, \nu) \stackrel{\{\sc smallmatrix}}{\leftarrow} \mathbb{Z}_p^2$, and pk = $(X_1 = g^{\mu}, X_2 = g^{\nu})$.
- § Encrypt($pk = (X_1, X_2), M; \alpha, \beta$): For M, and random $\alpha, \beta \leftarrow \mathbb{Z}_p^2$, $\mathcal{C} = (c_1 = X_1^{\alpha}, c_2 = X_2^{\beta}, c_3 = g^{\alpha+\beta} \cdot M).$
- § Decrypt(dk = $(\mu, \nu), C = (c_1, c_2, c_3)$): Computes $M = c_3/(c_1^{1/\mu}c_2^{1/\nu})$.

Randomization

$$\mathsf{Random}(\mathsf{pk}, \mathcal{C}; r, s) : \mathcal{C}' = (c_1 X_1^r, c_2 X_2^s, c_3 g^{r+s}) = (X_1^{\alpha+r}, X_2^{\beta+s}, g^{\alpha+r+\beta+s} \cdot M)$$

RUR

(BBS04

RUHR-UNIVERSITÄT BOCHUM

Definition 3 (Signature Scheme)

- $\mathcal{S} = (\mathsf{Setup}, \mathsf{SKeyGen}, \mathsf{Sign}, \mathsf{Verif}):$
 - § Setup $(1^{\mathfrak{K}})$: param;
 - § SKeyGen(param): public verification key vk, private signing key sk;
 - § Sign(sk, m; s): signature σ on m, under sk;
 - § Verif(vk, m, σ): checks whether σ is valid on m.

Unforgeability: Given q pairs (m_i, σ_i) , it should be hard to output a valid σ on a fresh m.

Definition 4 (Waters Signature)

- § Setup_S(1^{\Re}): Generates (p, \mathbb{G}_T , e, g), an extra h, and (u_i) for the Waters function ($\mathcal{F}(m) = u_0 \prod_i u_i^{m_i}$).
- § SKeyGen_S(param): Picks $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and outputs $\mathsf{sk} = h^x$, and $\mathsf{vk} = g^x$;
- § Sign(sk, m; s): Outputs $\sigma(m) = (sk\mathcal{F}(m)^s, g^s);$
- § Verif(vk, m, σ): Checks the validity of σ : $e(g, \sigma_1) \stackrel{?}{=} e(\mathcal{F}(m), \sigma_2) \cdot e(vk, h)$

Randomization

$$\mathsf{Random}(\sigma; r) : \sigma' = \left(\sigma_1 \mathcal{F}(m)^r, \sigma_2 g^r\right) = \left(\mathsf{sk} \mathcal{F}(m)^{r+s}, g^{r+s}\right)$$

RUB

(Wat05)

Definition 5 (DL)

Given $g, h \in \mathbb{G}^2$, it is hard to compute α such that $h = g^{\alpha}$.

Definition 6 (CDH)

Given $g, g^a, h \in \mathbb{G}^3$, it is hard to compute h^a .

Definition 7 (DLin)

Given $u, v, w, u^a, v^b, w^c \in \mathbb{G}^6$, it is hard to decide whether c = a + b.

1 General Remarks

2 Building blocks

3 Non-Interactive Proofs of Knowledge

- Groth Sahai methodology
- Motivation
- Signature on Ciphertexts
- Application to other protocols
- Waters Programmability

4 Interactive Implicit Proofs

Groth-Sahai Proof System

§ Pairing product equation (PPE): for variables $\mathcal{X}_1, \ldots, \mathcal{X}_n \in \mathbb{G}$

$$(E):\prod_{i=1}^{n}e(A_{i},\mathcal{X}_{i})\prod_{i=1}^{n}\prod_{j=1}^{n}e(\mathcal{X}_{i},\mathcal{X}_{j})^{\gamma_{i,j}}=t_{T}$$

determined by $A_i \in \mathbb{G}$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $t_T \in \mathbb{G}_T$.

 $_{\$}\,$ Groth-Sahai \rightsquigarrow WI proofs that elements in $\mathbb G$ that were committed to satisfy PPE

Groth-Sahai Proof System

§ Pairing product equation (PPE): for variables $\mathcal{X}_1, \ldots, \mathcal{X}_n \in \mathbb{G}$

$$(E):\prod_{i=1}^{n}e(A_{i},\mathcal{X}_{i})\prod_{i=1}^{n}\prod_{j=1}^{n}e(\mathcal{X}_{i},\mathcal{X}_{j})^{\gamma_{i,j}}=t_{T}$$

determined by $A_i \in \mathbb{G}$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $t_T \in \mathbb{G}_T$.

 $_{\$}\,$ Groth-Sahai \rightsquigarrow WI proofs that elements in $\mathbb G$ that were committed to satisfy PPE

Setup(G): commitment key ck; Com(ck, $X \in G$; ρ): commitment $\vec{c_X}$ to X; Prove(ck, $(X_i, \rho_i)_{i=1,...,n}$, (E)): proof ϕ ; Verify(ck, $\vec{c_{X_i}}$, (E), ϕ): checks whether ϕ is valid.

$$(E):\prod_{i=1}^{n}e(A_{i},\mathcal{X}_{i})\prod_{i=1}^{n}\prod_{j=1}^{n}e(\mathcal{X}_{i},\mathcal{X}_{j})^{\gamma_{i,j}}=t_{T}$$

Properties:

- § correctness
- § soundness
- § witness-indistinguishability

$$(E):\prod_{i=1}^{n}e(A_{i},\mathcal{X}_{i})\prod_{i=1}^{n}\prod_{j=1}^{n}e(\mathcal{X}_{i},\mathcal{X}_{j})^{\gamma_{i,j}}=t_{T}$$

Properties:

- § correctness
- § soundness
- § witness-indistinguishability
- § randomizability Commitments and proofs are publicly randomizable.

Electronic Voting

For dessert, we let people vote

- \checkmark Chocolate Cake
- $\checkmark\,$ Cheese Cake
- ✓ Fruit Salad
- \checkmark Brussels Sprout

After collection, we count the number of ballots:

Chocolate Cake	123
Cheese Cake	79
Fruit Salad	42
Brussels sprout	1

Authentication

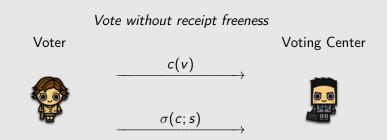
- \S Only people authorized to vote should be able to vote
- \S People should be able to vote only once

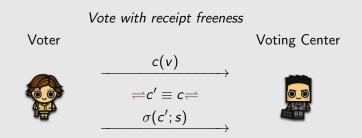
Anonymity

- \S Votes and voters should be anonymous
- \triangle Receipt freeness

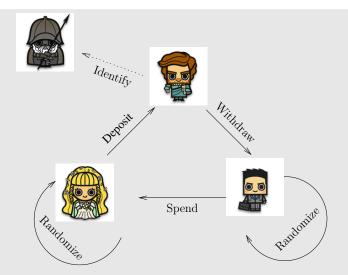
Homomorphic Encryption and Signature approach

- § The voter generates his vote v.
- § The voter encrypts v to the server as c.
- § The voter signs c and outputs σ .
- (c, σ) is a ballot unique per voter, and anonymous.
- § Counting: granted homomorphic encryption $C = \prod c$.
- § The server decrypts C.





Electronic Cash



Protocol

- \S Withdrawal: A user get a coin c from the bank
- \S Spending: A user pays a shop with the coin c
- \S Deposit: The shop gives the coin c back to the bank

Electronic Coins

Expected properties

- \checkmark Unforgeability \rightsquigarrow Coins are signed by the bank
- \checkmark No Double-Spending \rightsquigarrow Each coin is unique
- ✓ Anonymity → Blind Signature

Definition 8 (Blind Signature)

A blind signature allows a user to get a message m signed by an authority into σ so that the authority *even powerful* cannot recognize later the pair (m, σ) .

Chaum 81

Fischlin 06

Round-Optimal Blind Signature

- § The user encrypts his message m in c.
- § The signer then signs c in σ .
- § The user verifies σ .
- § He then encrypts σ and c into C_{σ} and C and generates a proof π .
- § π : C_{σ} is an encryption of a signature over the ciphertext *c* encrypted in C, and this *c* is indeed an encryption of *m*.
- § Anyone can then use C, C_{σ}, π to check the validity of the signature.

§ A user should be able to encrypt a ballot.

RUB

- § He should be able to sign this encryption.
- § Receiving this vote, one should be able to randomize for *Receipt-Freeness*.

E-Cash

- $\S~$ A user should be able to encrypt a token
- \S The bank should be able to sign it providing Unforgeability
- § This signature should now be able to be randomized to provide *Anonymity*

Our Solution

- \S Same underlying requirements;
- § Advance security notions in both schemes requires to extract some kind of signature on the associated plaintext;
 d-Optimal Signature | Horst Görtz Institute for IT-Security | 2013 27/48

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013 8 General Framework for Signature on Randomizable Ciphertexts:

Commutative properties

RUB

Encrypt

To encrypt a message *m*:

$$c = (\mathsf{pk}_1^{r_1}, \mathsf{pk}_2^{r_2}, \mathcal{F}(m) \cdot g^{r_1+r_2})$$

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

Commutative properties

Encrypt

To encrypt a message *m*:

$$c = (\mathsf{pk}_1^{r_1}, \mathsf{pk}_2^{r_2}, \mathcal{F}(m) \cdot g^{r_1+r_2})$$

Sign \circ Encrypt

To sign a valid ciphertext c_1, c_2, c_3 , one has simply to produce.

$$\sigma = (c_1^{s}, c_2^{s}, \mathsf{sk} \cdot c_3^{s}, \mathsf{pk}_1^{s}, \mathsf{pk}_2^{s}, g^{s}) .$$

Commutative properties

RUB

Encrypt

To encrypt a message *m*:

$$c = (\mathsf{pk}_1^{r_1}, \mathsf{pk}_2^{r_2}, \mathcal{F}(m) \cdot g^{r_1+r_2})$$

Sign \circ Encrypt

To sign a valid ciphertext c_1, c_2, c_3 , one has simply to produce.

$$\sigma = (c_1^{s}, c_2^{s}, \mathsf{sk} \cdot c_3^{s}, \mathsf{pk}_1^{s}, \mathsf{pk}_2^{s}, g^{s}) .$$

$\mathsf{Decrypt}\,\circ\,\mathsf{Sign}\,\circ\,\mathsf{Encrypt}$

Rouse Rouse Signature | Horst Görtz Institute for IT-Security | 2013

Definition 9 (Signature on Ciphertexts)

- $\mathcal{SE} = (\mathsf{Setup}, \mathsf{SKeyGen}, \mathsf{EKeyGen}, \mathsf{Encrypt}, \mathsf{Sign}, \mathsf{Decrypt}, \mathsf{Verif}):$
 - § Setup $(1^{\mathfrak{K}})$: param_e, param_s;
 - § EKeyGen(param_e): pk, dk;
 - § SKeyGen(param_s): vk, sk;
 - § Encrypt(pk, vk, m; r): produces c on $m \in M$ and pk;
 - § Sign(sk, pk, c; s): produces σ , on the input c under sk;
 - § Decrypt(dk, vk, c): decrypts c under dk;
 - § Verif(vk, pk, c, σ): checks whether σ is valid.

Definition 10 (Extractable Randomizable Signature on Ciphertexts)

SE=(Setup, SKeyGen, EKeyGen, Encrypt, Sign, Random, Decrypt, Verif, SigE

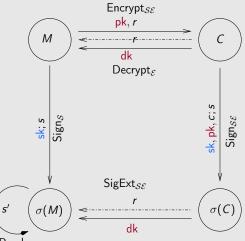
 $\mbox{\sc 8}$ Random(vk, pk, c, $\sigma; r', s')$ produces c' and σ' on c', using addi-

tional coins; Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

 \circ C:= Γ_{i} + (all i -) \bullet_{i} + \bullet_{i} = \bullet_{i} = \bullet_{i} = \bullet_{i} = \bullet_{i}

JB

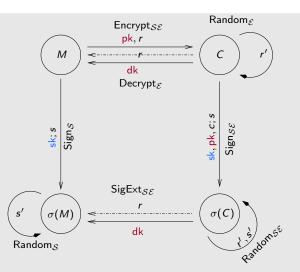
Randomizable Signature on Ciphertexts [PKC 2011: BFPV]



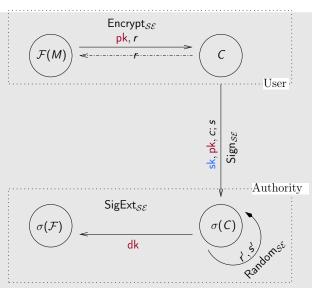
Random_S

RUB

Extractable SRC

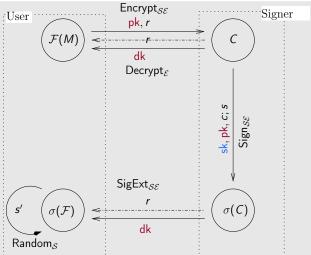


E-Voting



Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

Blind Signature



[PKC 2011: BFPV]

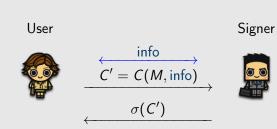
······

hgi

für IT-Sicherheit

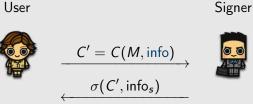
RUB

Partially-Blind Signature



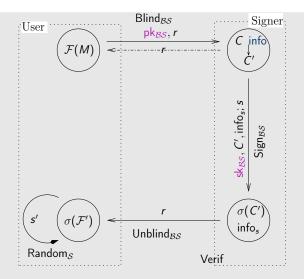
Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

Partially-Blind Signature



Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

Signer-Friendly Partially Blind Signature [SCN 2012: BPV]



Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

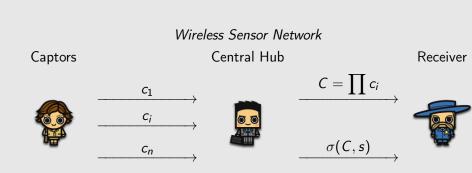
RUB

Horst Görtz Institut

RUHR-UNIVERSITÄT BOCHUM

Multi-Source Blind Signatures

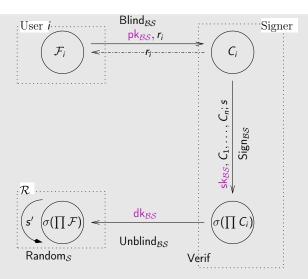
RUB



Multi-Source Blind Signatures **BPV**]

[SCN 2012:

Horst Görtz Institut für IT-Sicherheit



RUB

Different Generators

§ Each captor has a disjoint set of generators for the Waters function

Different Generators

- § Each captor has a disjoint set of generators for the Waters function
- § Enormous public key

Different Generators

- § Each captor has a disjoint set of generators for the Waters function
- § Enormous public key

A single set of generators

 $\S~$ The captors share the same set of generators

Different Generators

- § Each captor has a disjoint set of generators for the Waters function
- § Enormous public key

A single set of generators

- § The captors share the same set of generators
- § Waters over a non-binary alphabet?

Programmability of Waters over a non-binary alphabet

Definition 11 ((m, n)-programmability)

F is (m, n) programmable if given g, h there is an efficient trapdoor producing a_X, b_X such that $F(X) = g^{a_X} h^{b_X}$, and for all $X_i, Z_j, Pr[a_{X_1} = \dots = a_{X_m} = 0 \land a_{Z_1} \cdot \dots \cdot a_{Z_n} \neq 0]$ is not negligible.

(1, q)-Programmability of Waters function

Why do we need it: Unforgeabilty, q signing queries, 1 signature to exploit.

 \sim Choose independent and uniform elements $(a_i)_{(1,...,\ell)}$ in $\{-1,0,1\}$, and random exponents $(b_i)_{(0,...,\ell)}$, and setting $a_0 = -1$. Then $u_i = g^{a_i} h^{b_i}$.

$$\mathcal{F}(m) = u_0 \prod u_i^{m_i} = g^{\sum_{\delta_i} a_i} h^{\sum_{\delta_i} b_i} = g^{a_m} h^{b_m}$$

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

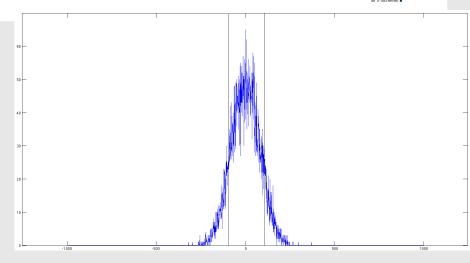
Non (2, 1)-programmability

Waters over a non-binary alphabet is not (2, 1)-programmable.

(1, q)-programmability

Waters over a polynomial alphabet remains (1, q)-programmable.

Sum of random walks on polynomial alphabets



Local Central Limit Theorem ⇒ Lindeberg Feller

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013

RUB

na

- § New primitive: Signature on Randomizable Ciphertexts [PKC 2011: BFPV]
- ✓ One Round Blind Signature
- ✓ Receipt Free E-Voting
- ✓ Signer-Friendly Blind Signature
- ✓ Multi-Source Blind Signature

Efficiency

- § DLin + CDH : 9ℓ + 24 Group elements.
- S SXDH + CDH⁺ : 6ℓ + 15, 6ℓ + 7 Group elements.

RUB

[PKC 2011: BFPV] [PKC 2011: BFPV]

[SCN 2012: BPV] [SCN 2012: BPV]

1 General Remarks

2 Building blocks

3 Non-Interactive Proofs of Knowledge

4 Interactive Implicit Proofs

- Motivation
- Smooth Projective Hash Function
- Application to previous protocols

Smooth Projective Hash Functions

Definition

[CS02]

Let $\{H\}$ be a family of functions:

- \S X, domain of these functions
- § L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using

- § either a secret hashing key hk: $H(x) = \text{Hash}_{L}(hk; x);$
- § or a *public* projected key hp: $H'(x) = \text{ProjHash}_L(\text{hp}; x, w)$

Public mapping $hk \mapsto hp = ProjKG_L(hk, x)$

For any $x \in X$, $H(x) = \text{Hash}_L(hk; x)$ For any $x \in L$, $H(x) = \text{ProjHash}_L(hp; x, w)$ w witness that $x \in L$, $hp = \text{ProjKG}_L(hk, x)$

RUB

For any $x \in X$, $H(x) = \text{Hash}_L(hk; x)$ For any $x \in L$, $H(x) = \text{ProjHash}_L(hp; x, w)$ w witness that $x \in L$, $hp = \text{ProjKG}_L(hk, x)$

Smoothness

For any $x \notin L$, H(x) and hp are independent

RUE

For any $x \in X$, $H(x) = \text{Hash}_L(hk; x)$ For any $x \in L$, $H(x) = \text{ProjHash}_L(hp; x, w)$ w witness that $x \in L$, $hp = \text{ProjKG}_L(hk, x)$

Smoothness

For any $x \notin L$, H(x) and hp are independent

Pseudo-Randomness

For any $x \in L$, H(x) is pseudo-random, without a witness w

RUE

For any $x \in X$, $H(x) = \text{Hash}_L(hk; x)$ For any $x \in L$, $H(x) = \text{ProjHash}_L(hp; x, w)$ w witness that $x \in L$, $hp = \text{ProjKG}_L(hk, x)$

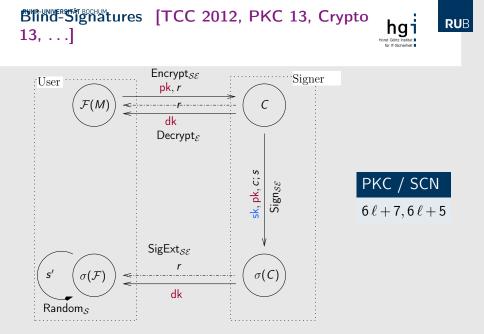
Smoothness

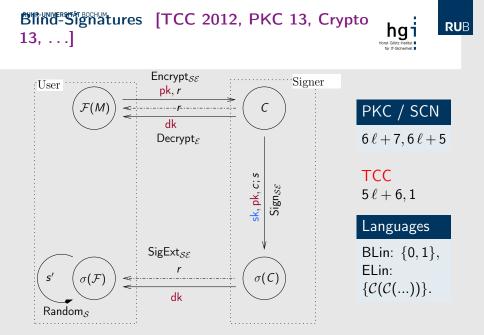
For any $x \notin L$, H(x) and hp are independent

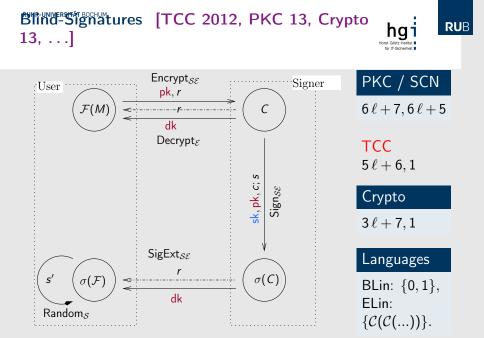
Pseudo-Randomness

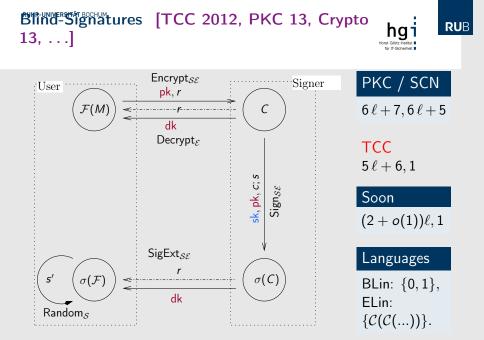
For any $x \in L$, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard-partitioned subset of X.









Groth-Sahai

- § Allows to combine efficiently classical building blocks
- § Allows several kind of new signatures under standard hypotheses

Smooth Projective Hash Functions

- § Can handle more general languages under better hypotheses
- § Do not add any extra-rounds in an interactive scenario
- \S More efficient in the usual cases

Groth-Sahai

- § Allows to combine efficiently classical building blocks
- § Allows several kind of new signatures under standard hypotheses

Smooth Projective Hash Functions

- § Can handle more general languages under better hypotheses
- § Do not add any extra-rounds in an interactive scenario
- \S More efficient in the usual cases

RUB

RUHR-UNIVERSITÄT BOCHUM Many thanks for your attention!

Any questions?

More details are available in the full version...

Round-Optimal Signature | Horst Görtz Institute for IT-Security | 2013